

JacksonDunstan.com
Copyright © 2021 Jackson Dunstan

All rights reserved

https://jacksondunstan.com/

Table of Contents
1. Introduction
2. Primitive Types and Literals
3. Variables and Initialization
4. Functions
5. Build Model
6. Control Flow
7. Pointers, Arrays, and Strings
8. References
9. Enumerations

10. Struct Basics
11. Struct Functions
12. Constructors and Destructors
13. Initialization
14. Inheritance
15. Struct and Class Permissions
16. Struct and Class Wrapup
17. Namespaces
18. Exceptions
19. Dynamic Allocation
20. Implicit Type Conversion
21. Casting and RTTI
22. Lambdas
23. Compile-Time Programming
24. Preprocessor
25. Intro to Templates
26. Template Parameters

27. Template Deduction and Specialization
28. Variadic Templates
29. Template Constraints
30. Type Aliases
31. Deconstructing and Attributes
32. Thread-Local Storage and Volatile
33. Alignment, Assembly, and Language Linkage
34. Fold Expressions and Elaborated Type Specifiers
35. Modules, The New Build Model
36. Coroutines
37. Missing Language Features
38. C Standard Library
39. Language Support Library
40. Utilities Library
41. System Integration Library
42. Numbers Library
43. Threading Library
44. Strings Library
45. Array Containers Library
46. Other Containers Library
47. Containers Library Wrapup
48. Algorithms Library
49. Ranges and Parallel Algorithms
50. I/O Library
51. Missing Library Features
52. Idioms and Best Practices
53. Conclusion

1. Introduction

History

C++’s predecessor is C, which debuted in 1972. It is still the most
used language with C++ in fourth place and C# in fifth.

C++ got started with the name “C with Classes” in 1979. The name
C++ came later in 1982. The original C++ compiler, Cfront, output C
source files which were then compiled to machine code. That
compiler has long since been replaced and modern compilers all
compile C++ directly to machine code.

Major additions to the language were added with “C++ 2.0” in 1989
and the language was then standardized by ISO in 1998.
Colloquially, this was called C++98 and began the convention where
the year is added to name a version of the language. It also
formalized the process of designing and standardizing the language
via a committee and various working groups.

Minor changes to the language in 2003 resulted in C++03, but the
“Modern C++” era began with huge changes to the language in
C++11. This also quickened the standardization process from the
previous eight year gap to just three years. This meant that we got
minor changes in C++14, relatively big changes in C++17, and huge
changes once again in C++20. Game engines such as Unreal,
Cryengine, and Lumberyard all support at least C++17, if not C++20.

At this point the language has little resemblance to C. Much C code
will still compile as C++, but idiomatic C++ is only superficially similar
to C.

https://www.tiobe.com/tiobe-index/

Standard Library

Every release of C++ includes what is called the “Standard Library.”
This is often called the “STL,” meaning “Standard Template Library,”
for its heavy use of a C++ language feature called templates. This
library is also standardized by ISO along with the language itself.

The Standard Library is similar to .NET’s Framework Class Library or
CoreFX. The architectural approach is for the C++ language to have
powerful, low-level language features so more can be implemented
in libraries instead of directly included in the language. For example,
the language doesn’t include a string class. Instead, the Standard
Library provides a string class that is efficiently implemented with
low-level language features.

The following table shows the major sections of the Standard Library
and their loose equivalents in .NET:

Standard
Library
Section

C++ C#

Language
support numeric_limits::max int.MaxValue

Concepts default_initializable where T : new()

Diagnostics exception System.Exception

Utilities tuple<int, float> (int, float)

Strings string System.String

Containers vector List

Iterators begin() GetEnumerator()

Standard
Library
Section

C++ C#

Ranges views::filter Enumerable.Where

Algorithms transform Enumerable.Select

Numerics accumulate Enumerable.Aggregate

Localization toupper Char.ToUpper

I/O fstream FileStream

File system copy File.Copy

Regular
expressions regex Regex

Atomic
operations atomic++ Interlocked.Increment

Threading thread Thread

Some game programming environments do not use the Standard
Library, or at least minimize its use. EA has implemented their own
version called EASTL. Unreal has many built-in similar types
(FString vs. string) and functions (MakeUnique vs. make_unique).
These libraries benefit from the same low-level language features
that the Standard Library is built on, but instead use them to
efficiently reimplement what would be language features in many
other languages.

https://github.com/electronicarts/EASTL

Tools

The main tool is, of course, the compiler. There are many good
options these days, but here are some of the most popular ones:

Compiler Cost Open
Source Platforms

Microsoft Visual Studio Free and
Paid No Windows

GCC (GNU Compiler
Collection) Free Yes Windows,

macOS, Linux

Clang Free Yes Windows,
macOS, Linux

Intel C++ Free No Windows,
macOS, Linux

There are also many IDEs available with the usual combination of
features: a text editor, compiler execution, interactive debugger, etc.
Here are some popular options:

IDE Cost Open
Source Platforms

Microsoft Visual
Studio

Free and
Paid No Windows

Apple Xcode Free No macOS

JetBrains CLion Paid No Windows,
macOS, Linux

IDE Cost Open
Source Platforms

Microsoft Visual
Studio Code Free Yes Windows,

macOS, Linux

Many static analyzers, known as “linters,” and dynamic analyzers are
available. The Clang sanitizers suite is free, open source, and has
Unreal support. Commercial tools such as Coverity SAST are also
available. Clang format and many IDEs can enforce style guides and
automatically reformat code.

https://clang.llvm.org/docs/index.html
https://docs.unrealengine.com/en-US/Programming/BuildTools/UnrealBuildTool/BuildConfiguration/index.html
https://www.synopsys.com/software-integrity/security-testing/static-analysis-sast.html
https://clang.llvm.org/docs/ClangFormat.html

Documentation

The C++ standard is available for purchase, but almost no C++
developers actually buy it. A draft version is available for free and will
be nearly identical, but it is extremely long and technical so it is also
only a reference of last resort. Instead of the standard itself, most
developers read reference sites such as cppreference.com just as
they would read Microsoft Docs (a.k.a. MSDN) for C# reference.

Many guideline documents exist for C++. The C++ Core Guidelines,
Google C++ style guide, and engine-specific standards are all
commonly used. The C++ Core Guidelines, in particular, has a
companion Guidelines Support Library (GSL) to enforce and
facilitate the guidelines.

https://www.iso.org/standard/68564.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/n4849.pdf
https://en.cppreference.com/w/
https://github.com/isocpp/CppCoreGuidelines
https://google.github.io/styleguide/cppguide.html
https://docs.unrealengine.com/en-US/Programming/Development/CodingStandard/index.html
https://github.com/Microsoft/GSL

Community

There are many places where the community of developers
congregate. Here are a few:

The C++ language Slack has 16,000 members
The /r/cpp subreddit has 185,000 members
The /r/Cplusplus subreddit has 25,000 members
CppCon is held annually and posts hundreds of talks
Engine-specific forums are generally very active
Many C++ GitHub repositories have 10,000+ stars and active
Issues sections

https://cpplang.now.sh/
https://www.reddit.com/r/cpp/
https://www.reddit.com/r/Cplusplus/
https://www.youtube.com/user/CppCon
https://forums.unrealengine.com/development-discussion/c-gameplay-programming
https://github.com/topics/cpp?o=desc&s=stars

2. Primitive Types and Literals

Types

Let’s start with integers, which are surprising in two ways: how
loosely defined they are and how many types there are. The type
name itself is made up of one or more parts:

Part Meaning

signed, unsigned,
or none

If the type is signed or not. None means
signed.

short, long, long
long, or none

Size classification of the integer. Not an
exact size! None means int.

int or none Explicitly state that this is an integer. None
states this implicitly.

Here’s all 24 permutations, including the sizes in bits on common
platforms:

C# Type C++ Type Windows Size Unix Size

short short 16 16

short short int 16 16

short signed short 16 16

short signed short int 16 16

ushort unsigned short 16 16

ushort unsigned short int 16 16

C# Type C++ Type Windows Size Unix Size

int int 32 32

int signed 32 32

int signed int 32 32

uint unsigned 32 32

uint unsigned int 32 32

N/A long 32 64

N/A long int 32 64

N/A long int 32 64

N/A signed long 32 64

N/A signed long int 32 64

N/A unsigned long 32 64

N/A unsigned long int 32 64

long long long 64 64

long long long int 64 64

long signed long long 64 64

long signed long long int 64 64

ulong unsigned long long 64 64

ulong unsigned long long int 64 64

There is also a type called size_t which is either a 32-bit or 64-bit
unsigned integer, depending on the CPU being compiled for.

There are four 8-bit types:

C# Type C++ Type x86 and x64 ARM

bool bool N/A N/A

sbyte char Signed Unsigned

sbyte signed char Signed Signed

byte unsigned char Signed Signed

The types named with char are due to their original usage for
characters in ASCII strings. There are also larger character types:

C# Type C++ Type Windows Size Unix Size

N/A char8_t 8 8

N/A char16_t 16 16

N/A char32_t 32 32

N/A wchar_t 16 32

Next we have floating-point types, including a super high precision
long double type:

C# Type C++ Type x86 Size ARM Size

float float 32 32

double double 64 32

N/A long double 80 128

There is no decimal type in C++, but libraries such as GMP provide
similar functionality.

Given the uncertainty of size across CPU and OS, it’s a best practice
to avoid many of these types and instead use types that have
specific sizes. These are found in the Standard Library or in game
engine APIs. Here’s how much simpler that makes everything:

Meaning C# Type C++ Type Unreal Type

Boolean bool bool bool

8-bit signed integer sbyte int8_t int8

8-bit unsigned integer byte uint8_t uint8

16-bit signed integer short int16_t int16

16-bit unsigned integer ushort uint16_t uint16

8-bit character N/A char8_t CHAR8

16-bit character char char16_t CHAR16

32-bit character N/A char32_t CHAR32

32-bit signed integer int int32_t int32

32-bit unsigned integer uint uint32_t uint32

64-bit signed integer long int64_t int64

64-bit unsigned integer ulong uint64_t uint64

32-bit floating point number float float float

128-bit floating point number decimal N/A N/A

https://gmplib.org/

Literals

Now that we know all these types, let’s express them by writing some literals. First, and
most obviously, booleans:

Literal Type Value

true bool 1

false bool 0

Next are integers. They are written in four parts:

Part Meaning

0x, 0X, 0, 0b, 0B or none The chosen base: hexadecimal, octal, or binary. None
means decimal.

0123456789abcdefABCDEF',
01234567', or 01'

Digits of the chosen base. ' characters are optional
separators like _ in C#.

u, U, or none If the integer is unsigned. None means signed for decimal
and octal, unsigned for hexadecimal and binary.

l, L, ll, LL, or none
The size classification. None means “the smallest size that
can fit the value” from the int size classification to long then
to long long. Note: can be swapped with u or U, if specified

Here are some examples:

Literal Type Base Signed Size

123 int
Decimal
(default)

Signed
(default)

int
(default)

5000000000 long
Decimal
(default)

Signed
(default)

long
(default)

123u unsigned
int

Decimal
(default)

Unsigned
(explicit)

int
(default)

123ul unsigned
long

Decimal
(default)

Unsigned
(explicit)

long
(explicit)

123lu unsigned
long

Decimal
(default)

Unsigned
(explicit)

long
(explicit)

Literal Type Base Signed Size

0x123456 int
Hexadecimal
(explicit)

Signed
(default)

int
(default)

0xffffffff unsigned
int

Hexadecimal
(explicit)

Unsigned
(default)

int
(default)

0xffffffffff long
Hexadecimal
(explicit)

Signed
(default)

long
(default)

0xFFFFFFFFll long
long

Hexadecimal
(explicit)

Signed
(default)

long
long
(explicit)

0b10101010'01010101'10101010'01010101 unsigned
int

Binary
(explicit)

Unsigned
(default)

int
(default)

0123 int
Octal
(explicit)

Signed
(default)

int
(default)

Next up are floating point literals, which are also written in four parts parts:

Part Meaning

0x, 0X, or none Choose hexadecimal, or none for decimal

0123456789abcdefABCDEF.'
Digits of the chosen base. ' characters are optional
separators like _ in C#. May end in . for whole numbers.

e, e then +- then
0123456789, p, p then +-
then 0123456789, or none

Exponent x to multiply digits by 10^x. Always required for
hexadecimal and required for decimal if there’s no . in the
digits. e for decimal and p for hexadecimal.

f, F, l, L, or none Size classification of float (f) or long double (l). None
means double.

Here are some example floating point literals:

Literal Type Base

12.34 double Decimal

12.34f float Decimal

12.34F float Decimal

12.34e2 double Decimal

12.34e-2 double Decimal

Literal Type Base

12.34e-2f float Decimal

12.e1 double Decimal

12'34.56'78f float Decimal

0x12p2 double Hexadecimal

0x12.p2 double Hexadecimal

0x12'34'56.78p2f float Hexadecimal

Finally, we have character literals which take several forms:

Form Meaning

'c' char type if c fits, otherwise int type, with character c

u8'c' char8_t type with UTF-8 character c

u'c' char16_t type with UTF-16 character c

U'c' char32_t type with UTF-32 character c

L'c' wchar_t type with character c

'abc' int type representing multiple characters abc

Characters can be anything in their set (e.g. UTF-8) except ', \, and the newline character.
To get those, and other special characters, use an escape sequence:

Meaning Escape
Sequence Note Example

Single quote \'

Double quote \"

Question mark \?

Backslash \\

Bell \a

Backspace \b

Form feed \f

Line feed \n

Meaning Escape
Sequence Note Example

Carriage return \r

Tab \t

Vertical tab \v

Octal value \ABC \ABC is the octal value \0 is NUL

Hexadecimal value \xAB
\AB is the hexadecimal
value \x41 is A

16-bit Unicode code
point \uABCD \ABCD is the code point \u03b1 is α

32-bit Unicode code
point \UABCDEFGH

\ABCDEFGH is the code
point

\U0001F389 is
🎉

Here are some example character literals:

Literal Type Decimal Value

'A' char 65

'?' char 63

u8'A' char8_t 65

u'α' char16_t 945

U'\x1f389' char32_t 127881

'ab' int 127881

Conclusion

C++ literals are similar to C# literals, but different in several ways.
You can often write the exact same code in both languages and get
the same effect. There are several edge cases though, so it’s
important to know some of these details about how the language
works.

3. Variables and Initialization

Declaration

The basic form of a variable declaration should be very familiar to C#
developers:

int x;

Just like in C#, we state the type of the variable, the variable’s name,
and end with a semicolon. We can also declare multiple variables in
one statement:

int x, y, z;

Also like C#, these variables do not yet have a value. Consider trying
to read the value of such a variable:

int x;

int y = x;

In C#, this would result in a compiler error on the second line. The
compiler knows that x doesn’t have a value, so it can’t be read and
assigned to y. In C++, this is known as “undefined behavior.” When
the compiler encounters undefined behavior, it is free to generate
arbitrary code for the entire executable. It may or may not produce a
warning or error to warn about this, meaning it may silently produce
an executable that doesn’t do what the author thinks it should do. It

is very important to never invoke undefined behavior and tools have
been written to help avoid it.

This undefined behavior does have a purpose: speed. Consider this:

int localPlayerHealth;

foreach (Player p in players)

{

 if (p.IsLocal)

 {

 localPlayerHealth = p.Health;

 break;

 }

}

Debug.Log(localPlayerHealth);

We know that one player has to be the local player because that’s
how our game was designed, so it’s safe to not initialize
localPlayerHealth before the loop. Initializing it to 0 would be
wasteful in this case, but the C# compiler doesn’t know about our
game design so it can’t prove that we’ll always find the local player
and it forces us to initialize.

In C++, we’re free to skip this initialization and assume the risk of
undefined behavior if it turns out there really wasn’t a local player in
the players array. Alternatively, we can replicate the C# approach
and just initialize the variable to be safe.

https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html

Initialization

C++ provides a lot of ways to initialize variables. We’ve already seen
one above where a value is copied:

int x = y;

There are also some other ways that aren’t in C#:

int x{}; // x is filled with zeroes, so x == 0

int x{123};

int x(123);

Many more types of initialization exist, but are specific to certain
types such as arrays and classes. We’ll cover these later in the
book.

All of these initialization strategies can be combined when declaring
multiple variables in one statement:

int a, b = 123, c{}, d{456}, e(789);

This results in these values:

Variable Value

a (Unknown)

b 123

Variable Value

c 0

d 456

e 789

Type Deduction

In C#, we can use var to avoid needing to specify the type of our
variables. Similarly, C++ has the auto keyword:

auto x = 123;

auto x{123};

auto x(123);

Also similar to C#, we can only use auto when there is an initializer.
The following isn’t allowed:

auto x;

auto x{};

It’s important to remember that x is just as strongly-typed as if int
were explicitly specified. All that’s happening here is that the
compiler is figuring out what type the variable should be rather than
us typing it out manually.

An alternative approach, much less frequently seen, is to use the
decltype operator. This resolves to the type of its parameter:

int x;

decltype(x) y = 123; // y is an int

Lastly, since C++17 the register keyword has been deprecated:

register int x = 123;

It used to request that the variable be placed into a CPU register
rather than in RAM, such as on the stack. Compilers have long
ignored this request, so it’s best to avoid this keyword now.

Identifiers

The rules for naming C++ identifiers are similar to the rules for C#.
They must begin with a letter, underscore, or any non-digit Unicode
character. After that, they can contain any Unicode character except
some really strange ones.

Additionally, there are some restrictions on the names we can
choose:

Restriction Example Where

All keywords int for All code

operator then an operator
symbol operator+ All code

~ then a class name ~MyClass All code

Any name beginning with
double underscores int __x

All code except the
Standard Library

Any name beginning with an
underscore then a capital
letter

int _X
All code except the
Standard Library

Any name beginning with an
underscore int _x

All code in the global
namespace except the
Standard Library

There is no equivalent to C#’s “verbatim identifiers” (e.g. int @for)
to work around the keyword restriction.

Pointers

Like C#, at least when “unsafe” features are enabled, C++ has
pointer types. The syntax is even similar:

int* x;

int * x;

int *x;

The placement of the * is flexible, just like in C#. However, declaring
multiple variables in one line is different in C++. Consider this
declaration:

int* x, y, z;

The type of y differs between the languages since the * only
attaches to one variable in C++:

Language Type of x Type of y Type of z

C# int* int* int*

C++ int* int int

To make all three variables into pointers in C++, add a * to each:

int *x, *y, *z;

Or omit a * so that only some are pointers:

int *x, y, *z; // x and z are int*, y is int

We’ll cover how to actually use pointers more in depth later in the
book.

References

C++ has two kinds of references: “lvalue” and “rvalue.” Just like with
pointers, these are an annotation on another type:

// lvalue references

int& x;

int & x;

int &x;

// rvalue references

int&& x;

int && x;

int &&x;

When declaring more than one variable per statement, the same rule
applies here: & or && only attaches to one variable:

int &x, y; // x is an int&, y is an int

Taken all together, this means we can declare several variables per
statement and each can have their own modifier on the stated type:

int a, *b, &c, &&d;

The variables get these types:

Variable TypeVariable Type

a int

b int*

c int&

d int&&

We’ll dive into the details of how lvalue references and rvalue
references work later in the book. For now, it’s important to know that
they are like non-nullable pointers. This means we must initialize
them when they are declared. All of the above lines will fail to
compile since we didn’t. So let’s correct that:

int x = 123;

int& y = x;

int&& z = 456;

Here we have y as an “lvalue reference to an int.” We initialize it to
an lvalue, which is essentially anything with a name. x has a name
and is the right type: int. The result is that y now references x.

z is an “rvalue reference to an int.” An rvalue is essentially anything
without a name. We initialize it to 456 which has no name but does
have the right type: int. This means that z now references 456.

Putting this back together, we end up with multiple variables being
declared and initialized when required like this:

int x = 123;

int a, *b, &c = x, &&d = 456;

Conclusion

At a high level, variables in C++ are similar to C#. In the details
though, there are very important differences. The undefined behavior
stemming from not initializing them, pointer and reference characters
only applying to one variable in multiple declaration, various new
kinds of initialization syntax, and the presence of both lvalue and
rvalue references all make for a pretty different landscape even in
this basic category of variables.

4. Functions

Declaration and Definition

Functions in C++ can be split into two parts. The first is the function
declaration, which states its signature without stating how it works.
To do this, simply add a semicolon after the signature:

int Add(int a, int b);

Now let’s write the second part: the function’s definition. This also
contains the function’s signature but includes the body too:

int Add(int a, int b)

{

 return a + b;

}

So why does C++ have both a declaration and a definition when C#
only has the definition? It mostly has to do with how C++ is compiled.
We’ll cover that more in depth in the next chapter, but for now it’s
important to know that C++ is compiled from top to bottom in a
source file. A function definition or declaration makes it available to
be referenced by code further down in the file. Here’s an
approximation of what the compiler does:

// Start compiling here and read down the file's lines...

// There is no function `Add` at this point

// It doesn't matter that there is an `Add` later on

// This is a compile error

int four = Add(1, 3);

// Declaration of the `Add` function

// `Add` can now be referenced

int Add(int a, int b);

// Refers to `Add`, which the compiler knows about

// It doesn't matter that there's no definition yet

// The compiler trusts that the definition will come

later

// If it doesn't, there will be an error

int three = Add(2, 1);

// Definition of the `Add` function

// The programmer has fulfilled the promise to define it

// The compiler now knows what to do when `Add` is called

int Add(int a, int b)

{

 return a + b;

}

This is also OK:

// Definition of the `Add` function

// `Add` can now be referenced

// Also says what to do when `Add` is called

int Add(int a, int b)

{

 return a + b;

}

// Refers to `Add`, which the compiler knows about

int three = Add(2, 1);

So we can use a function declaration to reorder our code, even
though it’s compiled from top to bottom. We can just state the
signature at the top and leave the body until later on. In the next
chapter, we’ll talk about header files and this will become much more
important. For now, it’s good to know that C++ functions are
commonly seen with and without a declaration.

One last quirk: it’s possible to declare more than one function in a
statement just like int a, b; declares two variables. This is very
rarely seen and should generally be avoided in favor of the single-
declaration form.

// Two functions:

// int Add(int a, int b)

// int Sub(int a, int b)

int Add(int a, int b), Sub(int a, int b);

As with variables, both functions share the same return type.

Optional Parameter Names and Void

There’s a strange aspect of parameter names in C++: they’re
optional! This declaration is totally fine:

int Add(int, int);

After all, we’re just telling the compiler the signature of the function
and the parameter names are irrelevant to that. Perhaps more
strangely, we can omit the parameter names from function
definitions!

// A very poor implementation of addition...

int Add(int a, int)

{

 return a + 1;

}

This is sometimes useful when a certain function signature is
required but the parameters aren’t actually used in the body of the
function. Consider a function meant to be used as an event handler:

void OnPlayerSpawned(Vector3)

{

 NumSpawns++;

}

This function doesn’t care where the player spawned because all it’s
doing is keeping track of a statistic. So we can omit the parameter
name for a couple reasons. First, it tells the reader that this
parameter isn’t important in the function so it isn’t even given a name
that needs to be memorized. Second, it tells the compiler not to
complain about an unused variable. After all, we can’t use a varaible
without a name in the first place. Sometimes we see a middle ground
in C++ code where the name is stated inside a comment to gain only
the second benefit but not the first:

void OnPlayerSpawned(Vector3 /* position */)

{

 NumSpawns++;

}

If the function takes no parameters at all, it may optionally state this
explicitly by putting void where the parameters would normally go:

uint64_t GetCurrentTime(void);

Whether to add void or not is purely a stylistic choice.

Automatic Return Types

C++ variables can be declared with an auto type, similar to var in
C#. In C++, function return types can also be declared as auto:

auto Add(int a, int b)

{

 return a + b;

}

Just like with variables, the compiler figures out what the return type
should be. In this case, it’s just int since that’s what we get when
adding two int values together.

We can also specify the return type after the parameter list if we put
auto before the function name:

auto Add(int a, int b) -> int

{

 return a + b;

}

In this case, we’re explicitly stating the return type. It is not
automatically determined by the compiler, even though we have to
still add auto before the function name. This alternative syntax is
sometimes useful when the return type is very complex. We’ll see
some examples later in the book when we tackle function pointers
and templates.

Default Arguments

As in C#, default arguments are allowed as long as there aren’t any
non-defaulted parameters after the first one. It’s a little different in
C++ though due to split between declaration and definition. If the
function has both, the default arguments are specified in the
declaration:

// Function declaration states the default argument

values

void SpawnPlayer(Vector3 position, float speed=0.0f);

// Function definition omits them

void SpawnPlayer(Vector3 position, float speed)

{

 // ...

}

If there’s no declaration, then the default arguments are added to the
definition:

void SpawnPlayer(Vector3 position, float speed=0.0f)

{

 // ...

}

Variadic Functions

As in C#, functions may take a variable number of parameters. This
works really differently in C++ though. It’s not deprecated like
register variables are, but it’s often considered a bad practice to
even use the feature. Still, let’s see how they look:

// The `...` comes after all the normal parameters

// It means "0 or more parameters of any types go here"

void PrintLog(LogLevel level, ...)

{

 // ...

}

The function should then call va_start, va_arg, and va_end in order
to get the arguments. This is quite type-unsafe and a very clunky
interface, which is part of why the feature should generally not be
used. There are several alternatives that are preferred instead, but
many are more advanced features that will be discussed later on in
the book. For now, let’s discuss a simple one: overloading.

Overloading

As in C#, functions may be overloaded in the sense that more than
one function may have the same name. When the function is called,
the compiler figures out which of these identically-named functions
should actually be called.

// Get the player's score given their ID

int GetPlayerScore(int playerId);

// Get the local player's score

int GetPlayerScore();

// Get the score of the player at a given position

int GetPlayerScore(Vector3 position);

These functions vary by the type of argument and the number of
arguments. Now we can write code like this:

score = GetPlayerScore(myPlayerId);

score = GetPlayerScore();

score = GetPlayerScore(myPosition);

In this case, the compiler will generate calls to the three functions we
declared in the same order.

Ref, Out, and In parameters

In C#, parameters can be declared with the ref, in, and out
keywords. Each of these change the parameter to be a pointer to the
passed value. In C++, these keywords don’t exist. Instead, we use
some conventions:

// Alternative to `ref`

// Use an lvalue reference, which is like a non-nullable

pointer

void MovePlayer(Player& player, Vector3 offset)

{

 player.position += offset;

}

// Alternative to `in`

// Use a constant lvalue reference

// `const` means it can't be changed

void PrintPlayerName(const Player& player)

{

 DebugLog(player.name);

}

// Alternative to `out`

// Just use return values

ReallyBigMatrix ComputeMatrix()

{

 ReallyBigMatrix matrix;

 // ...math goes here...

 return matrix

}

// Another alternative to `out`

// Use lvalue reference parameters

void ComputeMatrix(ReallyBigMatrix& mat1,

ReallyBigMatrix& mat2)

{

 mat1 = /* math for mat1 */;

 mat2 = /* math for mat2 */;

}

// Another alternative to `out`

// Pack the outputs into a return value

tuple<ReallyBigMatrix, ReallyBigMatrix> ComputeMatrix()

{

 return make_tuple(/* math for mat1 */, /* math for

mat2 */);

}

In the case of ref, C++ functions typically use an lvalue reference. If
the reference needs to be nullable, which isn’t allowed for a C# ref
parameter, a pointer (Player*) can be used instead.

For in, a const lvalue reference is typically used. We haven’t
covered const yet, but suffice to say it doesn’t allow changes to the
variable. Writing player.score = 0; would cause a compiler error.
This is broadly similar to what would happen with out parameters in

C#. Again, a pointer (const Player* player) can be used if the
parameter needs to sometimes be null.

out parameters are usually written by just returning them. In case
more than one return value is needed, there are a couple of main
options. First, lvalue reference parameters can be taken. This has
the unfortunate downside that they can be read from before being
assigned to so they might be inadvertently used as input. It’s also
unclear to callers whether they’re providing arguments for input,
output, or both. Second is the much-preferred option: pack all the
outputs into a struct and return it. We haven’t talked about structs
or templates, which are similar to C# generics, but the Standard
Library’s tuple type and make_tuple helper function are shown here
as roughly the alternatives to C# tuples.

Static Variables

Local variables within functions may be declared static. Similar to
static fields of classes and structs in C#, this means that the
variable has only one instance. A static C++ local variable has only
one instance across all calls to the function:

int GetNextId()

{

 static int id = 0;

 id++;

 return id;

}

GetNextId(); // 1

GetNextId(); // 2

GetNextId(); // 3

In this example we have an id local variable that is static. There
will be only one id across all calls to GetNextId. It’s like id is a global
variable, but it can only be referred to within the function where it’s
declared. This can be very convienient, but also be very surprising,
just like static fields in C#.

Constexpr

Finally for this chapter, functions may be marked with constexpr.
This means that the function can be evaluated at compile time. For
example:

constexpr int GetSquareOfSumUpTo(int n)

{

 int sum = 0;

 for (int i = 0; i < n; ++i)

 {

 sum += i;

 }

 return sum * sum;

}

This function can then be evaluated at compile time in order to
generate a constant:

DebugLog(GetSquareOfSumUpTo(5000));

// equivalent to...

DebugLog(1020530960);

The function can also be evaluated at runtime, such as when its
parameters are dependent on runtime values:

int n = file.ReadInt();

DebugLog(GetSquareOfSumUpTo(n));

This means that normal C++ can be reused for both compile time
and runtime work. There’s usually no need to run scripts in another
language in order to generate C++ files. The types and functionality
the program is already made up of are usable at compile time with
this mechanism.

There are some restrictions to what’s possible in a constexpr
function though. Since they were introduced in C++11, each version
has relaxed these restrictions. Still, some features like static local
variables and goto aren’t allowed even in C++20.

Conclusion

Broadly speaking, functions are very similar between C# and C++.
There are many differences though. These differences span
syntactic quirks like how ref parameters are declared all the way to
radically different features like compile-time function execution and
static local variables. As we progress through the book, we’ll learn
about many more types of functions including member functions
(“methods”) and lambdas!

5. Build Model

Compiling and Linking

With C#, we compile all our source code files (.cs) into an assembly
such as an executable (.exe) or a library (.dll).

With C++, we compile all our translation units (source code files with
.cpp, .cxx, .cc, .C, or .c++) into object files (.obj or .o) and then link
them together into an executable (app.exe or app), static library (.lib
or .a), or dynamic library (.dll or .so).

If any of the source code files changed, we recompile them to
generate a new object files and then run the linker with all the
unchanged object files too.

This model brings up a couple of questions. First, what is an object
file? This is known as an “intermediate” file since it’s neither the
source code nor an output file like an executable. The C++ language
standard doesn’t say anything about what the format of this file is. In
practice, it’s a binary file that is specific to a particular version of a

particular compiler configured with particular settings. If the compiler,
version, or settings change, all the code needs to be rebuilt.

Second, what is the difference between a static library and a
dynamic library? A dynamic library is very similar to a dynamic library
in C#. It’s a library of machine code, just like an executable.
However, it can be loaded and unloaded by an executable or other
dynamic library at runtime. A static library, on the other hand, can
only be loaded at compile time and can never be unloaded. In this
way, it functions more like just another object file:

Because static libraries are available at build time, the linker builds
them directly into the resulting executable. This means there’s no
need to distribute a separate dynamic library file to end users, no
need to open it from the file system separately, and no possibily of
overriding its location such as by setting the LD_LIBRARY_PATH
environment variable.

Critically for performance, all calls into functions in the static library
are just normal function calls. This means there’s no indirection
through a pointer that is set at runtime when a dynamic library is
loaded. It also means that the linker can perform “link time
optimizations” such as inlining these functions.

The main downsides stem from needing the static libraries to be
present at compile time. This makes them unsuitable for tasks such
as loading user-created plugins. Perhaps most importantly for large
projects, they must be linked in every build even if just one small
source file was changed. Link times grow proportionally and can
hinder rapid iteration. As a result, sometimes dynamic libraries will
be used in development builds and static libraries will be used in
release builds.

We won’t discuss the specifics of how to run the compiler and linker
in this book. This is heavily dependent on the specific compiler, OS,
and game engine being used. Usually game engines or console
vendors will provide documentation for this. Also typical is to use an
IDE like Microsoft Visual Studio or Xcode that provides a “project”
abstraction for managing source code files, compiler settings, and so
forth.

https://docs.unrealengine.com/en-US/Programming/Development/VisualStudioSetup/index.html

Header Files and the Preprocessor

In C#, we add using directives to reference code in other files. C++
has a similar “module” system added in C++20 which we’ll cover in a
future chapter in this book. For now, we’ll pretend like that doesn’t
exist and only discuss the way that C++ has traditionally been built.

Header files (.h, .hpp, .hxx, .hh, .H, .h++, or no extension) are by far
the most common way for code in one file to reference code in
another file. These are simply C++ source code files that are
intended to be copy-and-pasted into another C++ source code file.
The copy-and-paste operation is performed by the preprocessor.

Just like in C#, preprocessor directives like #if are evaluated before
the main phase of compilation. There is no separate preprocessor
executable that must be called to produce an intermediate file that
the compiler receives. Preprocessing is simply an earlier step for the
compiler.

C++ uses a preprocessor directive called #include to copy and
paste a header file’s contents into another header file (.h) or a
translation unit (.cpp). Here’s how it looks:

// math.h

int Add(int a, int b);

// math.cpp

#include "math.h"

int Add(int a, int b)

{

 return a + b;

}

The #include "math.h" tells the preprocessor to search the directory
that math.cpp is in for a file named math.h. If it finds such a file, it
reads its contents and replaces the #include directive with them.
Otherwise, it searches the “include paths” it’s been configured with.
The C++ Standard Library is implicitly searched. If math.h isn’t found
in any of these locations, the compiler produces an error.

Afterward, math.cpp looks like this:

int Add(int a, int b);

int Add(int a, int b)

{

 return a + b;

}

Recall from the previous chapter that the first Add is a function
declaration and the second is a function definition. Since the
signatures match, the compiler knows we’re defining the earlier
declaration.

So far we’ve split the declaration and definition across two files, but
without much benefit. Now let’s make this pay off by adding another
translation unit:

// user.cpp

#include "math.h"

int AddThree(int a, int b, int c)

{

 return Add(a, Add(b, c));

}

This shows how user.cpp can add the same #include "math.h" to
access the declaration of Add, resulting in this:

int Add(int a, int b);

int AddThree(int a, int b, int c)

{

 return Add(a, Add(b, c));

}

Now the compiler will encounter the declaration of Add and be OK
with AddThree calling it even though there’s no definition of Add yet. It
simply makes a note in the object file it outputs (user.obj) that Add is
an unsatisfied dependency.

When the linker executes, it reads in user.obj and math.obj.
math.obj contains the definition of Add and user.obj contains the
definition of AddThree. At that point, the linker really needs the
definition of Add, so it uses the one it found in math.obj.

There is an alternative version of #include that’s commonly seen:

#include <math.h>

This version is meant to search just for the C++ Standard Library
and other header files that the compiler provides. For example,
Microsoft Visual Studio allows #include <windows.h> to make

Windows OS calls. This is useful to disambiguate file names that are
both in the application’s codebase and provided by the compiler.
Imagine this program:

#include "math.h"

bool IsNearlyZero(float val)

{

 return fabsf(val) < 0.000001f;

}

fabsf is a function in the C Standard Library to take the absolute
value of a float. When the preprocessor runs with the quotes
version of #include it finds our math.h, so we get this:

int Add(int a, int b);

bool IsNearlyZero(float val)

{

 return fabsf(val) < 0.000001f;

}

Then the compiler can’t find fabsf so it errors. Instead, we should
use the angle brackets version of #include since we’re looking for
the compiler-provided math.h:

#include <math.h>

bool IsNearlyZero(float val)

{

 return fabsf(val) < 0.000001f;

}

This produces what we wanted:

float fabsf(float arg);

// ...and many, many more math function declarations...

bool IsNearlyZero(float val)

{

 return fabsf(val) < 0.000001f;

}

Also note that we can specify paths in the #include that correspond
to a directory structure:

#include "utils/math.h"

#include <nlohmann/json.hpp>

Finally, while it’s esoteric and usually best avoided, there is nothing
stopping us from using #include to pull in non-header files. We can
#include any file as long as the result is legal C++. Sometimes
#include is even placed in the middle of a function to fill in part of its
body!

ODR and Include Guards

C++ has what it calls the “one definition rule,” commonly abbreviated
to ODR. This says that there may be only one definition of something
in a translation unit. This includes variables and functions, which
presents us some problems as our codebase grows. Imagine we’ve
expanded our math library and added a vector math library on top of
it:

// math.h

int Add(int a, int b);

float PI = 3.14f;

// vector.h

#include "math.h"

float Dot(float aX, float aY, float bX, float bY);

// user.cpp

#include "math.h"

#include "vector.h"

int AddThree(int a, int b, int c)

{

 return Add(a, Add(b, c));

}

bool IsOrthogonal(float aX, float aY, float bX, float bY)

{

 return Dot(aX, aY, bX, bY) == 0.0f;

}

Here we have vector.h using #include to pull in math.h. We also
have user.cpp using #include to pull in both vector.h and math.h.
This is a good practice since it avoids an implicit dependency on
math.h that would break if vector.h was ever changed to remove the
#include "math.h". Still, we’re about to see that this presents a
problem. Let’s look at user.cpp after the preprocessor has replaced
the #include "math.h" directive:

int Add(int a, int b);

float PI = 3.14f;

#include "vector.h"

int AddThree(int a, int b, int c)

{

 return Add(a, Add(b, c));

}

bool IsOrthogonal(float aX, float aY, float bX, float bY)

{

 return Dot(aX, aY, bX, bY) == 0.0f;

}

Now the compiler replaces the #include "vector.h":

int Add(int a, int b);

float PI = 3.14f;

#include "math.h"

float Dot(float aX, float aY, float bX, float bY);

int AddThree(int a, int b, int c)

{

 return Add(a, Add(b, c));

}

bool IsOrthogonal(float aX, float aY, float bX, float bY)

{

 return Dot(aX, aY, bX, bY) == 0.0f;

}

Finally, it replaces the #include "math.h" from the contents of
vector.h that it copied in:

int Add(int a, int b);

float PI = 3.14f;

int Add(int a, int b);

float PI = 3.14f;

float Dot(float aX, float aY, float bX, float bY);

int AddThree(int a, int b, int c)

{

 return Add(a, Add(b, c));

}

bool IsOrthogonal(float aX, float aY, float bX, float bY)

{

 return Dot(aX, aY, bX, bY) == 0.0f;

}

Multiple declarations of the Add function are OK because they’re not
definitions so they don’t violate the ODR. The compiler simply
ignores the duplicate declarations.

The definition of PI, on the other hand, is most certainly a definition.
Having two definitions of the same variable name violates the ODR
and we get a compiler error.

To work around this, we add what’s called an “include guard” to our
header files. There are two basic forms this can take, but both make
use of the preprocessor. Here’s the first form in math.h:

#if (!defined MATH_H)

#define MATH_H

int Add(int a, int b);

float PI = 3.14f;

#endif

This makes use of the #if, #define, and #endif directives, which are
similar to their C# counterparts. The only real difference in this case
is the use of !defined MATH_H in C++ instead of just !MATH_H in C#.

One variant of this is to make use of a C++-only #ifndef MATH_H as
a sort of shorthand for #if (!defined MATH_H):

#ifndef MATH_H

#define MATH_H

int Add(int a, int b);

float PI = 3.14f;

#endif

In either case, we choose a naming convention and apply our file
name to it to generate a unique identifier for the file. There are many
popular forms for this including these:

math_h

MATH_H

MATH_H_

MYGAME_MATH_H

To avoid needing to come up with unique names, all common
compilers offer the non-standard #pragma once directive:

#pragma once

int Add(int a, int b);

float PI = 3.14f;

Regardless of the form chosen, let’s look at how this helps avoid the
ODR violation. Here’s how user.cpp looks after all the #include
directives are resolved: (indentation added for clarity)

#ifndef MATH_H

#define MATH_H

 int Add(int a, int b);

 float PI = 3.14f;

#endif

#ifndef VECTOR_H

#define VECTOR_H

 #ifndef MATH_H

 #define MATH_H

 int Add(int a, int b);

 float PI = 3.14f;

 #endif

 float Dot(float aX, float aY, float bX, float bY);

#endif

int AddThree(int a, int b, int c)

{

 return Add(a, Add(b, c));

}

bool IsOrthogonal(float aX, float aY, float bX, float bY)

{

 return Dot(aX, aY, bX, bY) == 0.0f;

}

On the first line (#ifndef MATH_H), the preprocessor finds that MATH_H
isn’t defined so it keeps all the code until the #endif. That includes a
#define MATH_H, so now it’s defined.

Likewise, the #ifndef VECTOR_H succeeds and allows VECTOR_H to be
defined. The nested #ifndef MATH_H, however, fails because MATH_H
is now defined. Everything until the matching #endif is stripped out.

In the end, we have this result:

int Add(int a, int b);

float PI = 3.14f;

float Dot(float aX, float aY, float bX, float bY);

int AddThree(int a, int b, int c)

{

 return Add(a, Add(b, c));

}

bool IsOrthogonal(float aX, float aY, float bX, float bY)

{

 return Dot(aX, aY, bX, bY) == 0.0f;

}

The duplicate definition of PI has been effectively removed from the
translation unit by the include guard, so we no longer get a compiler
error for the ODR violation.

Inline

Even with the ODR compiler error fixed, we still have a problem: a
linker error. The reason for this is that the vector.cpp translation unit
also contains a copy of PI. Here’s how it looks originally:

#include "vector.h"

float Dot(float aX, float aY, float bX, float bY)

{

 return Add(aX*bX, aY+bY);

}

Here it is after the preprocessor resolves the #include directives:

#ifndef VECTOR_H

#define VECTOR_H

 #ifndef MATH_H

 #define MATH_H

 int Add(int a, int b);

 float PI = 3.14f;

 #endif

 float Dot(float aX, float aY, float bX, float bY);

#endif

float Dot(float aX, float aY, float bX, float bY)

{

 return Add(aX*bX, aY+bY);

}

Remember that each translation unit is compiled separately. In this
translation unit, MATH_H and VECTOR_H have not been set with #define
as they were in the user.cpp translation unit. So both of the include
guards succeed and we get this:

int Add(int a, int b);

float PI = 3.14f;

float Dot(float aX, float aY, float bX, float bY);

float Dot(float aX, float aY, float bX, float bY)

{

 return Add(aX*bX, aY+bY);

}

That’s great for the purposes of compiling this translation unit since
there are no duplicate definitions to violate the ODR. Compilation will
succeed, but linking will fail.

The reason for the linker error is that, by default, we can’t have
duplicate definitions of PI at link time either. If we want to do that, we
need to add the inline keyword to PI to tell the compiler that

multiple definitions should be allowed. That’ll result in these
translation units:

// user.cpp

int Add(int a, int b);

inline float PI = 3.14f;

float Dot(float aX, float aY, float bX, float bY);

int AddThree(int a, int b, int c)

{

 return Add(a, Add(b, c));

}

bool IsOrthogonal(float aX, float aY, float bX, float bY)

{

 return Dot(aX, aY, bX, bY) == 0.0f;

}

// vector.cpp

int Add(int a, int b);

inline float PI = 3.14f;

float Dot(float aX, float aY, float bX, float bY);

float Dot(float aX, float aY, float bX, float bY)

{

 return Add(aX*bX, aY+bY);

}

It may seem strange that inline is a keyword applied to variables.
The historical reason for this is that it was originally a hint to the
compiler that it should inline functions but, like the register
keyword, this was non-binding and virtually always ignored. It’s come
to mean “multiple definitions are allowed” instead, so it can now be
applied to both variables and functions.

For example, we could add a function definition to math.h as long as
it’s inline:

inline int Sub(int a, int b)

{

 return a - b;

}

This is often avoided though because any change to the function will
require recompiling all of the translation units that include it, directly
or indirectly, which may take quite a while in a big codebase.

Linkage

Finally for this chapter, C++ has the concept of “linkage.” By default,
variables like PI have external linkage. This means it can be
referenced by other translation units. For example, say we added a
variable to math.cpp:

float SQRT2 = 1.4f;

Now say we want to reference it from user.cpp. The #include
"math.h" won’t work because SQRT2 is in math.cpp, not math.h. We
can still reference it using the extern keyword:

extern float SQRT2;

float GetDiagonalOfSquare(float widthOrHeight)

{

 return SQRT2 * widthOrHeight;

}

This is similar to a function declaration in that we’re telling the
compiler to trust us and pretend a float exists with the name SQRT2.
So when it compiles user.cpp it makes a note in the user.obj object
file that we haven’t yet satisfied the dependency for SQRT2. When the
compiler compiles math.cpp, it makes a note that there is a float
named SQRT2 available for linking.

Later on, the linker runs and reads in user.obj as well as all the
other object files including math.obj. While processing user.obj, it
reads that note from the compiler saying that the definition of SQRT2

is missing and it goes looking through the other object files to find it.
Lo and behold, it finds a note in math.obj saying that there’s a float
named SQRT2 so the linker makes GetDiagonalOfSquare refer to that
variable.

Quick note: the extern keyword can also be applied in math.cpp, but
this has no effect since external linkage is the default. Still, here’s
how it’d look:

extern float SQRT2 = 1.4f;

One way to prevent this behavior is to add the static keyword to
SQRT2. This changes the linkage to “internal” and prevents the
compiler from adding that note to math.obj to say that a float
variable named SQRT2 is available for linking.

static float SQRT2 = 1.4f;

Now if we try to link user.obj and math.obj, the linker can’t find any
available definition of SQRT2 in any of the object files so it produces
an error.

Both extern and static can be used with functions, too. For
example:

// math.cpp

int Sub(int a, int b)

{

 return a - b;

}

static int Mul(int a, int b)

{

 return a * b;

}

// user.cpp

extern int Sub(int a, int b);

int SubThree(int a, int b, int c)

{

 return Sub(Sub(a, b), c);

}

extern int Mul(int a, int b); // compiler error: Mul is

`static`

Conclusion

In this chapter we’ve seen C++’s very different approach to building
source code. The “compile then link” approach combined with
header files has domino effects into the ODR, linkage, and include
guards. We’ll go into C++20’s module system that solves a lot of
these problems and results in a much more C#-like build model later
on in the book, but header files will still be very relevant even with
modules. There’s also a lot more detail to go into with respect to the
ODR and linkage, but we’ll cover that incrementally as we introduce
more language concepts like templates and thread-local variables.

6. Control Flow

If and Else

Let’s start with the lowly if statement, which is just like in C#:

if (someBool)

{

 // ... execute this if someBool is true

}

Unlike C#, there’s an optional initialization statement that can be
tacked on to the beginning. It’s like the first statement of a for loop
and is usually used to declare a variable scoped to the if statement.
Here’s how it’s typically used:

if (ResultCode code = DoSomethingThatCouldFail(); code ==

FAILURE)

{

 // ... execute this if DoSomethingThatCouldFail

returned FAILURE

}

The else part is just like C#:

if (someBool)

{

 // ... execute this if someBool is true

}

else

{

 // ... execute this if someBool is false

}

Goto and Labels

The goto statement is also similar to in C#. We create a label and
then name it in our goto statement:

void DoLotsOfThingsThatMightFail()

{

 if (!DoThingA())

 {

 goto handleFailure;

 }

 if (!DoThingB())

 {

 goto handleFailure;

 }

 if (!DoThingC())

 {

 goto handleFailure;

 }

 handleFailure:

 DebugLog("Critical operation failed. Aborting

program.");

 exit(1);

}

Like in C#, the label to goto must be in the same function. Unlike in
C#, the label can’t be inside of a try or catch block.

One subtle difference is that a C++ goto can be used to skip past the
declaration of variables, but not the initialization of them. For
example:

void Bad()

{

 goto myLabel;

 int x = 1; // Un-skippable initialization

 myLabel:

 DebugLog(x);

}

void Ok()

{

 goto myLabel;

 int x; // No initialization. Can be skipped.

 myLabel:

 DebugLog(x); // Using uninitialized variable

}

As with any use of an uninitialized variable, this is undefined
behavior and will likely lead to severe errors. Care should be taken
to ensure that the variable is eventually initialized before it’s read.

Switch

C++ switch, case, and default are similar to their C# counterparts:

switch (someVal)

{

 case 1:

 DebugLog("someVal is one");

 break;

 case 2:

 DebugLog("someVal is two");

 break;

 case 3:

 DebugLog("someVal is three");

 break;

 default:

 DebugLog("Unhandled value");

 break;

}

One difference is that a case that’s not empty can omit the break and
“fall through” to the next case. This is sometimes considered error-
prone, but can also reduce duplication. These two are equivalent:

// C#

switch (someVal)

{

 case 3:

 DoAtLeast3();

 DoAtLeast2();

 DoAtLeast1();

 break;

 case 2:

 DoAtLeast2();

 DoAtLeast1();

 break;

 case 1:

 DoAtLeast1();

 break;

}

// C++

switch (someVal)

{

 case 3:

 DoAtLeast3();

 case 2:

 DoAtLeast2();

 case 1:

 DoAtLeast1();

}

Another difference that curly braces are required in a case in order to
declare variables:

switch (someVal)

{

 case 1:

 {

 int points = CalculatePoints();

 DebugLog(points);

 break;

 }

 case 2:

 DebugLog("someVal is two");

 break;

 case 3:

 DebugLog("someVal is three");

 break;

}

C++ switch statements also support initialization statements, much
like with if:

switch (ResultCode code = DoSomethingThatCouldFail();

code)

{

 case FAILURE:

 DebugLog("Failed");

 break;

 case SUCCESS:

 DebugLog("Succeeded");

 break;

 default:

 DebugLog("Unhandled error code");

 DebugLog(code);

 break;

}

Unlike C#, a switch can only be used on integer and enumeration
types. An chain of if and else is needed to handle anything else:

if (player == localPlayer)

{

 // .. handle the local player

}

else if (player == adminPlayer)

{

 // .. handle the admin player

}

C#’s pattern matching is also not supported, so there’s no ability to
write case int x: to match all int values and bind their value to x.
There’s also no when clauses, so we can’t write case Player p when
p.NumLives > 0:. Instead, we again do these with if and else in
C++.

Also not supported is goto case X;. Instead, we need to create our
own label and goto it:

switch (someVal)

{

 case DO_B:

 doB:

 DoB();

 break;

 case DO_A_AND_B:

 DoA();

 goto doB;

}

Ternary

The ternary operator in C++ is also similar to the C# version:

int damage = hasQuadDamage ? weapon.Damage * 4 :

weapon.Damage;

As in C#, this is equivalent to:

int damage;

if (hasQuadDamage)

 damage = weapon.Damage * 4;

else

 damage = weapon.Damage;

The C++ version is much looser with what we can put into the ? and
: parts. For example, we can throw an exception:

SaveHighScore() ? Unpause() : throw "Failed to save high

score";

In this case, the type of the expression is whatever type the non-
throw part has: the return value of Unpause. We could even throw in
both parts:

errorCode == FATAL ? throw FatalError() : throw

RecoverableError();

The type of the expression is void when we do this. Exceptions are,
of course, their own category of control flow and one we’ll cover
more in depth later on in the book.

There are many more rules to determine the type of the ternary
expression, but normally we just use the same type in both the ? and
the : parts like we did with the damage example. In this most typical
case, the type of the ternary expression is the same as either part.

While, Do-While, Break, and Continue

while and do-while loops are essentially exactly the same as in C#:

while (NotAtTarget())

{

 MoveTowardTarget();

}

do

{

 MoveTowardTarget()

} while (NotAtTarget());

break and continue also work the same way:

int index = 0;

int winnerIndex = -1;

while (index < numPlayers)

{

 // Dead players can't be the winner

 // Skip the rest of the loop body by using `continue`

 if (GetPlayer(index).Health <= 0)

 {

 continue;

 }

 // Found the winner if they have at least 100 points

 // No need to keep searching, so use `break` to end

the loop

 if (GetPlayer(index).Points >= 100)

 {

 winnerIndex = index;

 break;

 }

}

if (winnerIndex < 0)

{

 DebugLog("no winner yet");

}

else

{

 DebugLog("Player", index, "won");

}

For

The regular three-part for loop is also basically the same as in C#:

for (int i = 0; i < numBullets; ++i)

{

 SpawnBullet();

}

C++ has a variant of for that takes the place of foreach in C#. It’s
called the “range-based for loop” and it’s denoted by a colon:

int totalScore = 0;

for (int score : scores)

{

 totalScore += score;

}

It even supports an optional initialization statement like we saw with
if:

int totalScore = 0;

for (int index = 0; int score : scores)

{

 DebugLog("Score at index", index, "is", score);

 totalScore += score;

 index++;

}

The compiler essentially converts range-based for loops into regular
for loops like this:

int totalScore = 0;

{

 int index = 0;

 auto&& range = scores;

 auto cur = begin(range); // or range.begin()

 auto theEnd = end(range); // or range.end()

 for (; cur != theEnd; ++cur)

 {

 int score = *cur;

 DebugLog("Score at index", index, "is", score);

 totalScore += score;

 index++;

 }

}

We’ll cover pointers and references soon, but for now auto&& range
= scores is essentially making a synonym for scores called range
and *cur is taking the value pointed at by the cur pointer.

There must be begin and end functions that take whatever type
scores is, otherwise scores must have methods called begin and end
that take no parameters. If the compiler can’t find either set of begin
and end functions, there will be a compiler error. Regardless of

where they are, these functions also need to return a type that can
be compared for inequality (cur != end), pre-incremented (++cur),
and dereferenced (*cur) or there will be a compiler error.

As we’ll see throughout the book, there are many types that fit this
criteria and many user-created types are designed to fit it too.

C#-Exclusive Operators

Some of C#’s control flow operators don’t exist in C++ at all. First,
there’s no ?? or ??= operator. The ternary operator or if is usually
used in its place:

// Replacement for `??` operator

int* scores = m_Scores ? m_Scores : new Scores();

// Replacement for `??=` operator

if (!scores) scores = new Scores();

Second, there’s no ?. or ?[] operator so we usually just write it out
with a ternary operator for one level of indirection and if for more
levels:

// Replacement for `?.` operator

int* scores = m_Scores ? m_Scores->Today : nullptr;

// Replacement for `?[]` operator

int* highScore = scores ? &scores[0] : nullptr;

Note that nullptr is equivalent to null in C# and is simply a null
value compliant with any type of pointer but not with integers.

Return

Suitably, we end this chapter with return. The typical version is just
like in C#:

int CalculateScore(int numKills, int numDeaths)

{

 return numKills*10 - numDeaths*2;

}

There’s an alternative version where curly braces are used to more-
or-less pass parameters to the constructor of the return type:

CircleStats GetCircleInfo(float radius)

{

 return { 2*PI*radius, PI*radius*radius };

}

We’ll go further into constructors later in the book. For now, there’s
an important guarantee in the C++ language about returned objects
like CircleStats: copy elision. This means that if the values in the
curly braces are “pure,” like these simple constants and primitives,
then the CircleStats object will be initialized at the call site. This
means CircleStats won’t be allocated on the stack within
GetCircleInfo and then copied to the call site when GetCircleInfo
returns. This helps us avoid expensive copies when copying the
return value involves copying a large amount of data such as a big
array.

Conclusion

A lot of the control flow mechanisms are shared between C++ and
C#. We still have if, else, ?:, switch, goto, while, do, for,
foreach/”range-based for“, break, continue, and return.

C# additionally has ??, ??=, ?., and ?[], but C++ additionally has “init
expressions” on if, switch, and range-based for loops, return value
copy elision, and more flexibility with ?:, goto, and switch.

These differences lead to different idioms in the way we write code in
the two languages. For example, we need begin and end functions or
methods in order to enable range-based for loops for our types in
C++. If we were writing C#, we’d typically implement the
IEnumerator<T> interface.

7. Pointers, Arrays, and Strings

Pointers

C# pointers are allowed as long as we configure the compiler to
enable “unsafe” code. We then need to only use pointers within an
unsafe context, such as an unsafe method, unsafe class, or unsafe
block within a function.

C++ has no concept of “safe” or “unsafe” code. There’s no such
thing as an “unsafe” context, a “safe” context, or a compiler option to
enable “unsafe” code. Pointers are allowed everywhere and are
commonly used in many codebases. It turns out that their syntax
works very similarly to the C# pointer syntax:

int x = 123;

// Declare a pointer type: int* is a "pointer to an int"

// Get the address of x with &x

int* p = &x;

// Dereference the pointer to get its value

DebugLog(*p); // 123

// Dereference and assign the pointer to set its value

*p = 456;

DebugLog(x); // 456

// x->y is a convenient shorthand for (*x).y

Player* p = &localPlayer;

p->Health = 100;

Multiple levels of indirection are also supported by adding more *
characters to the type:

int x = 123;

int* p = &x;

int** pp = &p;

DebugLog(**pp); // 123

**pp = 456;

DebugLog(x); // 456

int y = 1000;

*pp = &y;

**pp = 2000;

DebugLog(x); // 456

DebugLog(y); // 2000

We also have void*, which is a pointer to any type. A cast is
required to dereference a void* since the compiler has no idea what
type it should do the read or write on. As in C#, such a cast is not
checked at runtime to ensure that the pointer really points to the type
being cast to.

int x = 123;

// &x is an int*, but void* is compatible with all

pointer types

void* pVoid = &x;

// Cast back to int* so we can dereference

int* pInt = (int*)pVoid;

DebugLog(*pInt); // 123

// Cast to float* so we can treat the memory as though it

held another type

float* pFloat = (float*)pVoid;

*pFloat = 3.14f;

DebugLog(x); // 1078523331

The last line could be considered data corruption of an int since
3.14f is not a valid int, but it’s a valid way to get the bits of a float.
This is part of the reason that these casts are unchecked.

Note that this is called “type punning” and it is technically undefined
behavior, meaning the compiler might generate arbitrary machine
code for this C++. At least in this simple case though, all compilers
will generate the machine code that we’d expect so that we’re simply
treating the same memory as though it were a different type.

As in C#, pointers may be null. There are three main ways this is
written in C++:

// nullptr is compatible with all pointer types, but not

integer arithmetic

// This is generally the preferred way since C++11

int* p1 = nullptr;

// NULL is commonly defined to be zero, but works with

integer arithmetic

int* p2 = NULL;

// The zero integer

int* p3 = 0;

Arrays

It may seem strange to see arrays lumped into the same chapter as
pointers, but they’re very similar in C++. Unlike in C#, arrays are not
an object that’s “managed” and subject to garbage collection. They
are instead simply a fixed-size contiguous allocation of the same
type of data:

// Declare an array of 3 int elements

// The elements of the array are uninitialized

int a[3];

// Initialize the first element of the array by writing

to it

a[0] = 123;

// Read the first element of the array

DebugLog(a[0]); // 123

When we create an array variable, it’s just like we individually
created its elements via variables:

int a0;

int a1;

int a2;

This means that there is no overhead for an array. It is literally just its
elements. It doesn’t even have an integer keeping track of its length
like the Length field in C#. This means that the C# stackalloc

keyword is unnecessary as C++ arrays are already allocated on the
stack when declared as local variables. Likewise, the fixed keyword
to create a fixed-size buffer as a struct or class field is unnecessary
as a C++ array’s elements are already stored inside the struct or
class.

There is also no bounds-checking on indexes into the array, just like
indexing into a pointer in C# or C++. It’s very important to be careful
not to read beyond the beginning or end of the array as there’s
usually no way to know what data will be read or overwritten.

The lines blur even more because we can implicitly convert arrays
into pointers:

int a[3];

a[0] = 123;

// Implicitly convert the int[3] array to an int*

// We get a pointer to the first element

int* p = a;

DebugLog(*p); // 123

// Indexing into pointers works just like in C#

DebugLog(p[0]); // 123

The opposite does not work though: we can’t write int b[3] = p.

Short arrays are commonly initialized with curly braces:

int a[3] = { 123, 456, 789 };

DebugLog(a[0], a[1], a[2]); // 123, 456, 789

If we specify more elements than will fit in the array’s size, we get a
compiler error:

int a[3] = { 123, 456, 789, 1000 }; // compiler error

If we specify fewer elements, only the ones we specify will be
initialized. Note that a trailing comma is allowed:

int a[3] = { 123, 456, };

DebugLog(a[0], a[1]); // 123, 456

DebugLog(a[2]); // Uninitialized. Could be anything!

It’s common to omit the array size when using curly braces to
initialize the array. This tells the compiler to count the number of
elements in the curly braces and make the array that long.

int a[] = { 123, 456, 789 }; // The a array has 3

elements

DebugLog(a[0], a[1], a[2]); // 123, 456, 789

Finally, we have multi-dimensional arrays. These are arrays of
arrays, both with fixed lengths. This means they are never “jagged”
but always “rectangular.” Just as with one-dimensional arrays, we
end up with a contiguous sequence of contiguous sequences of the
same type of data. There’s still no overhead:

int a[2][3] = {{1, 2, 3}, {4, 5, 6}};

DebugLog(a[0][0], a[0][1], a[0][2]); // 1, 2, 3

DebugLog(a[1][0], a[1][1], a[1][2]); // 4, 5, 6

These are implicitly converted into a pointer to the first dimension of
the array:

int a[2][3] = {{1, 2, 3}, {4, 5, 6}};

// Implicitly convert to a pointer to an array of 3 int

// Read the type name as "p is a pointer to an array of 3

int elements"

int (*p)[3] = a;

// Dereference that pointer to get a pointer to the first

element

int* pp = *p;

for (int i = 0; i < 6; ++i)

{

 DebugLog(pp[i]); // 1, 2, 3, 4, 5, 6

}

Indexing into a multi-dimensional array with fewer subscripts than its
dimensions just yields the remaining dimensions of the array. We
can capture this in a pointer using the same implicit conversion:

int a[2][3] = {{1, 2, 3}, {4, 5, 6}};

int* firstRow = a[0]; // Index 1 of 2 dimensions to get

the second dimension as a pointer

DebugLog(firstRow[0], firstRow[1], firstRow[2]); // 1, 2,

3

Pointers to Arrays and Arrays of Pointers

Sometimes we want to have a pointer to an array. This is essentially
what a C# array is since we only have a reference to it, not its actual
contents. Here’s how we’d do that in C++:

int a[] = { 1, 2, 3 };

// Add a * to make this a pointer to an array instead of

just an array

// This is similar to how int* is a pointer to an int

int (*p)[3] = &a;

// Dereference the pointer to get the array, which we can

index into

DebugLog((*p)[0], (*p)[1], (*p)[2]); // 1, 2, 3

Pointers to arrays aren’t supported by C# since pointers can’t point
to managed types like arrays.

If we want an array of pointers, just add a * to the type of the array
element:

int x = 1;

int y = 2;

int z = 3;

// Add a * to int to get int*: a pointer to an int

int* a[] = { &x, &y, &z };

// Index into the array to get the pointer then

dereference it to get the int

DebugLog(*a[0], *a[1], *a[2]); // 1, 2, 3

Arrays of pointers are supported by C#, but the array is a managed
object that we only have a reference to.

Strings

The difference with strings is similar to that of arrays. In C# we have
managed System.String objects that are garbage-collected. In C++,
we essentially have null-terminated arrays of characters:

// The string literal "hello" has type const char[6]

// Its contents are the characters 'h', 'e', 'l', 'l',

'o', 0

const char hello[] = "hello";

// Like any other array, it's implicitly converted a

pointer

const char* p = hello;

for (int i = 0; i < 6; ++i)

{

 DebugLog(p[i]); // h, e, l, l, o, <NUL>

}

We’ll go into const more later, but for now it’s just important to know
that the characters of the array can’t be changed. For instance, this
would produce a compiler error:

p[0] = 'H';

In chapter 3, we saw that there are various kinds of character literals.
The same is true for strings as each corresponds to the type of
character elements in its array:

String Type Syntax MeaningString Type Syntax Meaning

char[] “hello” ASCII string

wchar_t[] L”hello” “Wide character” string

char8_t[] u8″hello” UTF-8 string

char16_t[] u”hello” UTF-16 string

char32_t[] U”hello” UTF-32 string

Regardless of the character type, we can concatenate together
string literals just by placing them together. No + operator is needed,
as in C#.

char msg[] = "Hello, " "world!";

DebugLog(msg); // Hello, world!

As long as just one of the string literals has an encoding prefix, the
others will get it too:

const char16_t msg[] = "Hello, " u"world!";

DebugLog(msg); // Hello, world!

Support for mixing encoding prefixes varies by compiler.

Raw strings like this are commonly used when literals suffice, such
as log message text. When more advanced functionality is desired,
and it very commonly is, wrapper classes such as the C++ Standard
Library’s string or Unreal’s FString are used instead. We’ll go into
string later in the book.

Pointer Arithmetic

Like in C#, arithmetic may be performed on pointers:

int a[3] = { 0, 0, 0 };

int* p = a; // Make p point to the first element of a

*p = 1;

p += 2; // Make p point to the third element of a

*p = 3;

--p; // Make p point to the second element of a

*p = 2;

DebugLog(a[0], a[1], a[2]); // 1, 2, 3

Pointers may also be compared:

int a[3] = { 0, 0, 0 };

int* theStart = a;

int* theEnd = theStart + 3;

while (theStart < theEnd) // Compare pointers

{

 *theStart = 1;

 theStart++;

}

DebugLog(a[0], a[1], a[2]); // 1, 1, 1

Recall from chapter six that this satisfies the criteria for a range-
based for loop:

int a[3] = { 1, 2, 3 };

for (int val : a)

{

 DebugLog(val); // 1, 2, 3

}

The compiler transforms this into a normal for loop:

{

 int*&& range = a;

 int* cur = range;

 int* theEnd = range + 3;

 for (; cur != theEnd; ++cur)

 {

 int val = *cur;

 DebugLog(val);

 }

}

Note that the begin and end functions aren’t required in the special
case of arrays because the compiler knows the beginning and
ending pointers since the size of the array is fixed at compile time.

Function Pointers

Unlike C#, in C++ we are allowed to make pointers to functions:

int GetHealth(Player p)

{

 return p.Health;

}

// Get a pointer to GetHealth. Syntax in three parts:

// 1) Return type: int

// 2) Pointer name: (*p)

// 3) Parameter types: (Player)

int (*p)(Player) = GetHealth;

// Calling the function pointer calls the function

int health = p(localPlayer);

DebugLog(health);

There are two variants of this syntax that make no difference to the
functionality:

// Assign the address of the function instead of just its

name

int (*p)(Player) = &GetHealth;

// Dereference the function pointer before calling it

int health = (*p)(localPlayer);

Function pointers are commonly used like delegates in C#. They are
an object that can be passed around that, when called, invokes a
function. They are much more lightweight though as they are just a
pointer. Delegates have much more functionality, such as the ability
to add, remove, and invoke multiple functions and bind to functions
of various types such as instance methods and lambdas. We’ll cover
how to do that in C++ later on in the book.

To make an array of function pointers, add the square brackets ([])
after its name like before:

int GetHealth(Player p)

{

 return p.Health;

}

int GetLives(Player p)

{

 return p.Lives;

}

// Array of pointers to functions that take a Player and

return an int

int (*statFunctions[])(Player) = { GetHealth, GetLives };

// Index into the array like any other array

int health = statFunctions[0](localPlayer);

DebugLog(health);

int lives = statFunctions[1](localPlayer);

DebugLog(lives);

Arrays of function pointers are commonly used for jump tables to
replace a long chain of conditional logic with a simple index into a
simple array indexed read operation.

https://en.wikipedia.org/wiki/Branch_table

Conclusion

C++ pointers functionality includes everything C# pointers can do
and adds on the ability to create pointers to functions and pointers to
any type. Arrays and strings are closely related to pointers, unlike
their managed C# counterparts. Combined together, we have much
enhanced functionality such as arrays of function pointers to make
jump tables, a lightweight replacement for delegates, and an
alternative to stackalloc and fixed-size buffers that supports any
type of elements.

8. References

Pointers

As we saw last chapter, there is a lot of flexibility in pointers and their
closely-associated arrays and strings. Usually, it’s a lot more
flexibility than we really want. In the vast majority of cases, we simply
want a pointer to refer to a variable. We don’t want that variable to
be null, we don’t intend to perform arithmetic on the pointer, and we
don’t want to index into it like an array. Consider a function
declaration like this:

int GetTotalPoints(Player*);

This makes the reader ask themselves questions like “can the
Player pointer be null?” The reader might also wonder “is this a
single Player or an array of them?” and “if this is an array, how long
can it be?” The answers really depend on the implementation of
GetTotalPoints, but we don’t want readers to have to guess or
spend their time tracking down and reading the function definition.
The function definition might not even be available, such as with a
closed-source library.

Lvalue References

To address these issues, C++ introduces “references” as an
alternative to pointers. A reference is like an alias to something,
usually backed with a pointer in the compiled code. Here’s how one
looks:

int x = 123;

int& r = x; // <-- reference

DebugLog(x, r); // 123, 123

There are a several critical aspects of this. First, the syntax for a
reference is similar to a pointer except that we add a & instead of a *
to the type we want to refer to: int in this case. We can read the
resulting int& r as “r is a reference to an int.”

Second, we must initialize the reference when it’s declared. We can’t
simply write int& r; or we’ll get a compiler error. This helps avoid
undefined behavior since we can’t possibly read or write an
unintialized reference.

Third, the thing we initialize the reference to must be a valid “lvalue.”
This is generally thought of as “something with a name.” It includes
variables and functions. It also means that a reference can never be
null since everything with a name has a non-null memory address in
C++.

Fourth, we don’t initialize to &x like we’d do with a pointer and we
don’t dereference the reference with *x. We simply use it as an alias.
Any mention of r is just like we mentioned x. References are aliases,
not objects. A pointer is distinct from what it points to and can be
manipulated independently, but a reference cannot. This means

there’s no re-assignment of a reference because we can’t actually
refer to the reference that way:

int x = 123;

int y = 456;

int& r = x;

// This is equivalent to:

// x = y;

// y is read and written to x

// r remains an alias of x

r = y;

DebugLog(x, r); // 456, 456

This is usually easier to reason about since the reference, unlike a
pointer, can never change what it refers to as the program runs. We
can, however, make a second reference by assigning the first
reference to it:

int x = 123;

// Alias to x

int& r1 = x;

// This is equivalent to:

// int& r2 = x;

// So this is also an alias to x

int& r2 = r1;

DebugLog(r1, r2); // 123, 123

x = 456;

DebugLog(r1, r2); // 456, 456

Because a reference isn’t a distinct object, there’s no such thing as a
reference to a reference, pointer to a reference, or array of
references:

Here are three alternate ways to initialize a reference:

int& r(x);

int& r = {x};

int& r{x};

They may also be initialized by passing them as an argument using
two of the above forms:

void AddOne(int& val)

{

 val += 1;

}

int x = 1;

AddOne(x);

DebugLog(x); // 2

AddOne({x});

DebugLog(x); // 3

Likewise, returning a reference also initializes it:

int nextId = 0;

int& GetNextId()

{

 nextId++;

 return nextId;

}

int& id = GetNextId();

DebugLog(id); // 1

id = 0; // Reset

DebugLog(nextId); // 0

Now let’s see a reference to a function. These look just like pointers
to functions, except that there’s a & instead of a *:

// Reference to a function that takes an int and returns

a bool

bool (&r)(int) = MyFunc;

We can use them like this:

// Function to find the index according to some matching

function

int FindIndex(int array[5], bool (&matcher)(int))

{

 for (int i = 0; i < 5; ++i)

 {

 if (matcher(array[i]))

 {

 return i;

 }

 }

 return -1;

}

bool IsEven(int val)

{

 return (val & 1) == 0;

}

// Make a reference to our matching function

bool (&isEven)(int) = IsEven;

int array[5] = { 1, 2, 3, 4, 5 };

int index = FindIndex(array, isEven); // Pass reference,

not function

DebugLog(index);

Because we can initialize a reference by passing an argument, there
really isn’t a need to explicitly make isEven as a local reference.
Instead, we could do this:

// Passing the name of the function initializes the

matcher reference argument

int index = FindIndex(array, IsEven);

A local reference is more useful when we don’t know what we want
to reference at compile time and we want to use that runtime choice
over and over:

// Decide what to alias at runtime

bool (&matcher)(int) = userWantsEvens ? IsEven : IsOdd;

// Use the result of that decision over and over

int index1 = FindIndex(array1, matcher);

int index2 = FindIndex(array2, matcher);

bool foundInBothArrays = index1 >= 0 && index2 >= 0;

Here’s a summary of the constraints that references impose
compared to pointers:

Must be initialized when declared
Can’t be indexed into to offset a memory address
Not subject to pointer arithmetic
No references to references
No pointers to references

No arrays of references
Can’t be null
Can’t change what it aliases

That seems like a lot of lost flexibility and a lot more rules to live by,
but it turns out that satisfying all of these constraints is extremely
common. Aside from the last three, these are mostly the constraints
that C# references impose on us and they’ve turned out to be quite
practical. In practice, C++ references are very heavily used to
succinctly convey all of these constraints to readers. Let’s look once
more at the function we started with, now using a reference:

int GetTotalPoints(Player&);

It’s now clear that the Player can’t be null because that’s not
possible with references. It’s clear that that this isn’t an array of
Player objects, because that’s also not possible. The & instead of *
means that it’s simply an alias for one non-null Player object.

Rvalue References

So far we’ve seen how references can make an alias for an “lvalue,”
which is something with a name. We can also make references to
things without a name. These references to “rvalues” were
introduced in C++11 and are used quite extensively now.

An rvalue reference has two & after the type it references and is
initialized with something that doesn’t have a name:

int&& r = 5;

The literal 5 doesn’t have a name like a variable does. Still, we can
reference it and its lifetime is extended to the lifetime of the
reference so that the reference never refers to something that no
longer exists. It works like this:

{

 // 5 is the rvalue

 // It's not just a temporary on this line

 // Its lifetime is extended to match r

 int&& r = 5;

 // 123 is the rvalue, but it's just written to x

 // 123 stops existing after the semicolon

 int x = 123;

 // Both the rvalue reference and the variable are

still readable

 DebugLog(r, x); // 5, 123

 // The temporary that r refers to is still accessible

via the alias

 r = 6;

 DebugLog(r, x); // 6, 123

 // Don't worry, we didn't overwrite the fundamental

concept of 5 :)

 DebugLog(5); // 5

// The scope that r is in ends

// r and 5 end their lifetime

// They can no longer be used

}

Liftime extension is much more important with structs and classes
than with primitives like int, but the same rules apply. We’ll go much
more into structs and classes later in the book.

The same alternate initialization forms are allowed with rvalue
references:

int&& r(5);

int&& r = {5};

int&& r{5};

We can also initialize with function arguments:

void PrintRange(int&& from, int&& to)

{

 for (int i = from; i <= to; ++i)

 {

 DebugLog(i);

 }

}

PrintRange(1, 3); // 1, 2, 3

Return values can also initialize rvalue references, but these will
become “dangling” references when returning a temporary because
its liftime is not extended past the end of the function call:

Player&& MakePlayer(int id, int health)

{

 // Create a temporary Player

 // Alias it to an rvalue reference

 // Return that alias

 return { id, health };

}

// The returned rvalue reference is "dangling"

// It refers to a temporary Player that no longer exists

// It must not be used or undefined behavior will happen

Player&& player = MakePlayer(123, 100);

// We'll get garbage when we read from it

DebugLog(player.Id, player.Health); // 17823804, 12850082

It’s important to keep this in mind and only return rvalue references
whose lifetime is already going to extend beyond the end of the
function call. We’ll see some techniques for doing this later on in the
book.

The same constraints that apply to lvalue references apply to rvalue
references:

Must be initialized when declared
Can’t be indexed into to offset a memory address
Not subject to pointer arithmetic
No references to references
No pointers to references
No arrays of references
Can’t be null
Can’t change what it aliases

Additionally, despite the naming similarity, lvalue references are
different types than rvalue references. For example, consider trying
to call the above PrintRange function with lvalues:

int from = 1;

int to = 3;

// Compiler error

// Can't pass int& when int&& is required

PrintRange(from, to);

No other kind of initialization of an rvalue reference is possible with
an lvalue, even something as simple as this:

int x = 123;

// Compiler error

// x is an lvalue when int&& requires an rvalue

int&& r = x;

We can, however, assign an rvalue reference to an lvalue reference
when that rvalue reference has a name:

// Compiler error

// 123 is an rvalue when int& requires an lvalue

int& error = 123;

int&& rr = 123;

int& lr = rr; // rr has a name, so it's an lvalue

DebugLog(rr, lr); // 123, 123

rr = 456;

DebugLog(rr, lr); // 456, 456

The opposite doesn’t work when the lvalue reference has a name,
because that makes it not an rvalue:

int x = 123;

int& lr = x;

// Compiler error

// lr is an lvalue when int&& requires an rvalue

int&& rr = lr;

C# References

C# has several types of references. Let’s compare them with C++
references.

First, there’s the ref keyword used to pass function arguments “by
reference.” This is pretty close to a C++ lvalue reference as the
argument must be an lvalue and acts like an alias for the variable
that was passed. There are some differences though. First, C++
uses & instead of ref in the function signature and doesn’t require
the ref keyword when calling the function. Second, C# ref
arguments can only be references to variables, not functions.

The out and in parameter modifiers are also described as enabling
pass-by-reference functionality in C#. Parameters marked with out
are also like C++ lvalue references with the additional requirement
that they must be written to at least once by the function. There isn’t
a direct correspondence for this in C++ as the language tends to shy
away from requiring at compile time that the write will be done, as is
also the case with variable initialization. On the other hand, in
parameters are essentially the same as a const lvalue reference in
C++. We’ll cover const more in depth later, but for now it can be
thought of as like an enhanced version of readonly in C#.

Second, there are ref return values and ref local variables. These
are also similar to C++ lvalue references since they create an alias
to an lvalue. C++ uses the same & syntax instead of ref in both the
function signature for ref returns and and variable declaration for
local variables. C# also requires ref at the return statement, but
C++ doesn’t.

Third, there are ref and readonly ref structs in C# to force
allocating them on the stack by enforcing various restrictions. This
meaning of “reference” has no correlation to either lvalue or rvalue
references in C++.

Fourth, and finally, there are reference types such as classes,
interfaces, delegates, dynamic objects, the object type, and strings.
All of these are “managed” types subject to garbage collection. As
C++ has no “managed” types or garbage collection, there are also
no reference types. Instead, references can be made to any type in
C++.

The meaning of those references in C++ is different to that of C#
references, though. In C#, they are somewhere in between pointers
and C++ references. They’re like pointers in that they are an object,
as opposed to an alias. They can be null and they and can be
reassigned. They’re like references in that no pointer arithmetic is
allowed and they can’t be indexed into like an array to offset a
memory address.

Another major difference is that managed C# types are subject to
garbage collection when there are no more references to them. This
implies some behind-the-scenes tracking mechanism to know
whether there are any references still available. This is very
complicated, sometimes expensive, code that must be thread-safe
and deal with esoteric edge cases. C++ references have no such
tracking and do not imply any grand resource-management scheme.
Besides lifetime extension of rvalue references, which is usually
rather brief, there’s no attempt to globally manage all references for
any purpose, including deallocation.

Conclusion

C++ references are similar to C++ pointers, C# pointers, and various
kinds of C# references, but different in many ways from all of them.
Its lvalue references are a unique way of referencing variables as
well as functions. Its rvalue references are especially strange as
none of these similar concepts offers anything close to the same
functionality. As we go on through the book, we’ll see the growing
importance and common usage of both kinds of references in many
other areas of the language and its Standard Library.

9. Enumerations

Unscoped Enumerations

The first kind of enumerations in C++ are called “unscoped”
enumerations. This is because they don’t introduce a new scope to
contain their enumerators, but instead introduce those enumerators
to their surrounding scope. Consider this one:

enum Color

{

 Red = 0xff0000,

 Green = 0x00ff00,

 Blue = 0x0000ff

};

DebugLog(Red); // 0xff0000

This example shows several aspects of unscoped enumerations.
First, defining one is very similar to in C#. We use enum then the
enumeration’s name, and put enumerators and their values in curly
braces separated by commas. Unlike in C#, we add a semicolon
after the closing curly brace.

Second, we see how the Red, Green, and Blue enumerators are put
into the surrounding scope rather than inside the Color enum as
would have been the case in C#. This means the DebugLog line has
Red in scope to read and print out.

Optionally though, we can use C++’s “scope resolution” operator to
explicitly access the enumerator:

DebugLog(Color::Red); // 0xff0000

Because the name doesn’t need to be used to access its
enumerators, the name of the enum is itself optional:

enum

{

 Red = 0xff0000,

 Green = 0x00ff00,

 Blue = 0x0000ff

};

DebugLog(Red); // 0xff0000

Like in C#, the enumerators’ values are optional. They even follow
the same rules for default values: the first enumerator defaults to
zero and subsequent enumerators default to the previous
enumerator’s value plus 1:

enum Prime

{

 One = 1,

 Two,

 Three,

 Five = 5

};

DebugLog(One, Two, Three, Five); // 1, 2, 3, 5

Unlike C#, these enumerator values implicitly convert to integer
types:

int one = One;

DebugLog(one); // 1

Specifically, the underlying integer type of the enum is chosen from
the following list. The smallest type that can hold the largest
enumerator’s value is selected.

int

unsigned int

long

unsigned long

long long

unsigned long long

If the largest value doesn’t fit in any of these types, the compiler
produces an error.

For more control, the underlying integer type can be specified
explicitly using the same syntax as in C#:

enum Color : unsigned int

{

 Red = 0xff0000,

 Green = 0x00ff00,

 Blue = 0x0000ff

};

Like in C#, we can cast enumerators to integers. Just note that it’s
undefined behavior if that integer is too small to hold the
enumerator’s value:

// OK cast to integer

int one = (int)One;

DebugLog(one); // 1

// Too big to fit in 1 byte: undefined behavior

char red = Red;

DebugLog(red); // could be anything...

We can also cast integers to enum variables, even if the integer
value isn’t one of the enumerators:

// OK cast to enum-typed variable

Prime prime = (Prime)3;

DebugLog(prime); // 3

// OK cast to enum-typed variable, even though not a

named enumerator

Prime prime = (Prime)4;

DebugLog(prime); // 4

We can also initialize them with a single integer value in curly braces
as long as the integer fits in the underlying type and the underlying
type has been explicitly stated:

Prime prime{3};

Note that we’ve used the enum name like a type here, just like we
could in C#. That means we can write functions like this:

void OutputCharacterToLedDisplay(char ch, Color color)

{

 // ...

}

Passing an arbitrary integer is no longer allowed for color:

OutputCharacterToLedDisplay('J', 0xff0000); // compiler

error

OutputCharacterToLedDisplay('J', Red); // OK

Like with functions, enums may be declared and referenced without
being defined as long as it’s defined later on. When doing this, we
have to specify the underlying integer type:

// Declare the enum

enum Color : unsigned int;

// Use the enum's name

void OutputCharacterToLedDisplay(char ch, Color color)

{

 // ...

}

// Define the enum

enum Color : unsigned int

{

 Red = 0xff0000,

 Green = 0x00ff00,

 Blue = 0x0000ff

};

Both the declaration and the definition are a type just like int or
float, so they can be followed by identifiers in order to create
variables:

// Declaration

enum Color : unsigned int red, green, blue;

red = Red;

green = Green;

blue = Blue;

DebugLog(red, green, blue); // 0xff0000, 0x00ff00,

0x0000ff

// Definition

enum Color : unsigned int

{

 Red = 0xff0000,

 Green = 0x00ff00,

 Blue = 0x0000ff

} red = Red, green = Green, blue = Blue;

DebugLog(red, green, blue); // 0xff0000, 0x00ff00,

0x0000ff

Finally, there is no special handling of bit flags like C#’s [Flags]
attribute. Enumerators of all unscoped enumeration types may
simply be used directly:

enum Channel

{

 RedOffset = 16,

 GreenOffset = 8,

 BlueOffset = 0

};

unsigned char GetRed(unsigned int color)

{

 return (color & Red) >> RedOffset;

}

DebugLog(GetRed(0x123456)); // 0x12

Scoped Enumerations

Fittingly, the other type of enumeration in C++ is called a “scoped”
enumeration. As expected, this introduces a new scope which
contains the enumerators. They do not spill out into the surrounding
scope, so the “scope resolution” operator is required to access them:

enum class Color : unsigned int

{

 Red = 0xff0000,

 Green = 0x00ff00,

 Blue = 0x0000ff

};

// Compiler error: Red is not in scope

auto red = Red;

// OK, type of the red variable is Color

auto red = Color::Red;

There’s a lot of commonality here: enum, an enum name, an
underlying type, enumerator names, enumerator values, the curly
braces, and the semicolon at the end. The only difference is the
presence of the word class after enum and before the enum’s name.
This keyword tells the compiler to make a scoped enumeration
instead of an unscoped one. The keyword struct may be used
instead and has exactly the same effect as class.

Scoped enumerations behave mostly the same as unscoped
enumerations, so we’ll just talk about the handful of differences.

First up, the name of the enum is not optional. This is because such
an enum would be pretty useless since its enumerators didn’t get
added to the surrounding scope. Without a name to add before the
scope resolution operator (::), there’d be no way to access them.

// Compiler error: no name

enum class : unsigned int

{

 Red = 0xff0000,

 Green = 0x00ff00,

 Blue = 0x0000ff

};

// Compiler error: no way to name the enum to access its

enumerators

auto red = ???::Red;

Another difference is that the enumerators of a scoped enumeration
don’t implicitly convert to integers:

// Compiler error: no implicit conversion

unsigned int red = Color::Red;

Casting is required to convert:

// OK

unsigned int red = (unsigned int)Color::Red;

The choice of underlying type when not explicitly stated is a lot
simpler, too: it’s always int:

enum class Numbers

{

 // OK: 1 fits in int

 One = 1,

 // Compiler error: too big to fit in an int (assuming

int is 32-bit)

 Big = 0xffffffffffffffff

};

Because the underlying type is known to be int, the compiler can
use the enumeration type without it being explicitly stated in the
declaration:

// OK: underlying type not required for scoped enums

// As usual, the default underlying type is int

enum struct Prime;

// OK: definition doesn't need to specify an underlying

type either

enum struct Prime

{

 One = 1,

 Two,

 Three,

 Five = 5

};

// OK: definition is allowed to specify an underlying

type as long as it's int

enum struct Prime : int

{

 One = 1,

 Two,

 Three,

 Five = 5

};

Those are actually all the differences between the two kinds of
enumerations. The following table compares and contrasts them with
each other and C# enumerations:

Aspect Example Unscoped Scoped C#

Initialization
of
enumerators

One = 1 Optional Optional Optional

Casting
enumerators
to integers

int one =
(int)One; Yes Yes Yes

Casting
integers to
enumerators

Prime p =
(Prime)4; Yes Yes Yes

Name enum Prime
{}; Optional Required Required

Aspect Example Unscoped Scoped C#

Implicit
enumerators-
to-integer
conversion

C++: int
one =
Prime::One
C#: int
one =
Prime::One

Yes No No

Scope
resolution
operator

C++:
Prime::One
C#:
Prime.One

Optional Required Required

Implicit
underlying
type

enum E {};
int or
larger int int

Underlying
type required
for
declaration

enum E; Yes No
N/A
(no
declarations)

Initialization
from integer

C++: Prime
p{4}
C#: Prime
p = 4

Yes Yes No

Immediate
variables

enum Prime
{} p; Yes Yes No

Requirement
to use bitwise
operators

None Casting
None
([Flags]
optional)

Conclusion

Of the two kinds of enumerations in C++, scoped enumerations are
definitely closest to C# enumerations. Still, C++ has unscoped
enumerations and they are commonly used. It’s important to know
the differences between them, scoped enumerations, and C#
enumerations as they have a number of subtle differences to keep in
mind.

10. Struct Basics

Declaration and Definition

Just like with functions and enumerations, structs may be declared
and defined separately:

// Declaration

struct Vec3;

// Definition

struct Vec3

{

 float x;

 float y;

 float z;

};

Notice how struct declarations and definitions looks pretty similar to
enumeration declarations and definitions. We use the struct
keyword, give it a name, add curly braces to hold its contents, then
finish up with a semicolon.

We can create struct variables just like we create primitive and
enumeration variables:

Vec3 vec;

As with primitives and enumerations, this variable is uninitialized.
Initialization of structs is a surprisingly complex topic compared to C#
and we’ll cover it in depth later on in the book. For now, let’s just
initialize by individually setting each of the struct’s data members.
That’s the C++ term for the equivalent of fields in C#. They’re also
commonly called “member variables.” To do this, we use the .
operator just like in C#:

Vec3 vec;

vec.x = 1;

vec.y = 2;

vec.z = 3;

DebugLog(vec.x, vec.y, vec.z); // 1, 2, 3

We can also initialize the data members in the struct definition with
either =x or {x}:

struct Vec3

{

 float x = 1;

 float y{2};

 float z = 3;

};

Vec3 vec;

DebugLog(vec.x, vec.y, vec.z); // 1, 2, 3

As with enumerations, we can also declare variables between the
closing curly brace and the semicolon of a definition:

struct Vec3

{

 float x;

 float y;

 float z;

} v1, v2, v3;

This is sometimes used when omitting the name of the struct. This
anonymous struct has no name we can type out, but it can be used
all the same in a similar way to C# tuples ((string Name, int Year)
t = ("Apollo 11", 1969);):

// Anonymous struct with immediate variable

struct

{

 const char16_t* Name;

 int32_t Year;

} moonMission;

// Variables of this type can be used just like named

struct types

moonMission.Name = u"Apollo 11";

moonMission.Year = 1969;

DebugLog(moonMission.Name, moonMission.Year);

Because an anonymous struct can only be used via immediate
variables, declaring one without any immediate variables isn’t
allowed:

// Compiler error: anonymous struct requires at least one

immediate variable

struct { float x; };

Like with enumerations whose underlying type isn’t in the
declaration, the compiler doesn’t know the size of a struct after it’s
declared. The definition is required to know its size, so a declared
struct can’t be used to create a variable or define a function using
the struct type as an parameter or return value:

// Declaration

struct Vec3;

// Compiler error: can't create a variable before

definition

Vec3 v;

// Compiler error: can't take a function parameter before

definition

float GetMagnitudeSquared(Vec3 vec)

{

 return 0;

}

// Compiler error: can't return a function return value

before definition

Vec3 MakeVec(float x, float y, float z)

{

 // Compiler error: can't create a variable before

definition

 Vec3 v;

 // Compiler error: can't return a struct before

definition

 return v;

}

This also means that we can’t declare immediate variables after a
struct declaration:

// Compiler error: can't create a variable before

definition

struct Vec3 v1, v2, v3;

We can, however, use pointers and references to the struct since
they don’t depend on its size:

// Declaration

struct Vec3;

// Pointer

Vec3* p = nullptr;

// lvalue reference

float GetMagnitudeSquared(Vec3& vec)

{

 return 0;

}

// rvalue reference

float GetMagnitudeSquared(Vec3&& vec)

{

 return 0;

}

To access the fields of a pointer, we can either dereference with *p
and then use .x or use the shorthand p->x. Both are exactly
equivalent to struct pointers in C#. With lvalue or rvalue references,
we just use . because they are essentially just aliases to a variable,
not a pointer.

// Variable

Vec3 vec;

vec.x = 1;

vec.y = 2;

vec.z = 3;

// Pointer

Vec3* p = &vec;

p->x = 10;

p->y = 20;

(*p).z = 30; // Alternate version of p->z

// lvalue reference

float GetMagnitudeSquared(Vec3& vec)

{

 return vec.x*vec.x + vec.y*vec.y + vec.z*vec.z;

}

// rvalue reference

float GetMagnitudeSquared(Vec3&& vec)

{

 return vec.x*vec.x + vec.y*vec.y + vec.z*vec.z;

}

Layout

Like in C#, the data members of a struct are grouped together in
memory. Exactly how they’re laid out in memory isn’t defined by the
C++ Standard though. Each compiler will lay out the data members
as appropriate for factors such as the CPU architecture being
compiled for.

This is similar to the default struct layout in C#, which behaves as
though [StructLayout(LayoutKind.Auto)] were explicitly added.
There is no [StructLayout] attribute in C++, but compiler-specific
preprocessor directives are available to gain similar levels of control.

That said, compilers virtually always lay out the data members in a
predictible pattern. Each is placed sequentially in the same order as
written in the source code. Padding is placed between the data
members according to the alignment requirements of the data types,
which varies by CPU architecture. For example:

struct Padded // Takes up 8 bytes

{

 int8_t a; // Takes up 1 byte

 // Padding of 3 bytes

 int32_t b; // Takes up 4 bytes

};

The C++ Standard does make one guarantee though: a “standard
layout.” This says that if two structs start with the same sequence of
data types then those data members will be laid out the same. There
are complex exceptions to this, but it’ll hold for most normal use
cases like these. This means we can safely reinterpret some
common struct types:

https://docs.microsoft.com/en-us/cpp/preprocessor/pack?view=vs-2019

struct Vec3

{

 float x;

 float y;

 float z;

};

struct Quat

{

 // Starts with the same three floats as Vec3

 float x;

 float y;

 float z;

 // Not in common. May be placed anywhere later in

memory.

 float w;

};

// Reinterpret Vec3 as Quat

Vec3 vec;

Vec3* pVec = &vec;

Quat* pQuat = (Quat*)pVec;

// Safe to use the three starting data members because

types match

pQuat->x = 1;

pQuat->y = 2;

pQuat->z = 3;

// Definitely not safe to use the last data member

// Vec3 doesn't have a fourth float

// This is undefined behavior and probably corrupts

memory

pQuat->w = 4;

DebugLog(pQuat->x, pQuat->y, pQuat->z); // 1, 2, 3

DebugLog(pVec->x, pVec->y, pVec->z); // 1, 2, 3

DebugLog(vec.x, vec.y, vec.z); // 1, 2, 3

Bit Fields

In C#, we can manually create bit fields but C++ supports them
natively for all integer data members including bool. This allows us
to specify how many bits of memory a data member occupies:

struct Player

{

 bool IsAlive : 1;

 uint8_t Lives : 3;

 uint8_t Team : 2;

 uint8_t WeaponID : 2;

};

This struct takes up just one byte of memory because the sum of its
bit fields’ sizes is 8. Normally it would have taken up 4 bytes since
each data member would take up a whole byte of its own.

We can access these data members just like normal:

Player p;

p.IsAlive = true;

p.Lives = 5;

p.Team = 2;

p.WeaponID = 1;

DebugLog(p.IsAlive, p.Lives, p.Team, p.WeaponID); //

true, 5, 2, 1

https://jacksondunstan.com/articles/5393

The compiler will, as always, generate CPU instructions specific to
the arhitecture being compiled for and depending on settings such
as optimization level. Generally though, the instructions will read one
or more bytes containing the desired bits, use a bit mask to remove
the other bits that were read, and shift the desired bits to the least-
significant part of the data member’s type. Writing to a bit field is a
similar process.

As of C++20, bit fields may be initialized in the struct definition just
like other data members:

struct Player

{

 bool IsAlive : 1 = true;

 uint8_t Lives : 3 {5};

 uint8_t Team : 2 {2};

 uint8_t WeaponID : 2 = 1;

};

DebugLog(p.IsAlive, p.Lives, p.Team, p.WeaponID); //

true, 5, 2, 1

Note that the size of a bit field may be larger than the stated type:

struct SixtyFourKilobits

{

 uint8_t Val : 64*1024;

};

The size of Val and the struct itself is 64 kilobits, but Val is still used
just like an 8-bit integer.

Bit fields may also be unnamed:

struct FirstLast

{

 uint8_t First : 1; // First bit of the byte

 uint8_t : 6; // Skip six bits

 uint8_t Last : 1; // Last bit of the byte

};

Unnamed bit fields can also have zero size, which tells the compiler
to put the next data member on the next byte it aligns to:

struct FirstBitOfTwoBytes

{

 uint8_t Byte1 : 1; // First bit of the first byte

 uint8_t : 0; // Skip to the next byte

 uint8_t Byte2 : 1; // First bit of the second byte

};

Finally, since bit fields don’t necessarily start at the beginning of a
byte we can’t take their memory address:

FirstBitOfTwoBytes x;

// Compiler error: can't take the address of a bit field

uint8_t* p = &x.Byte1;

Static Data Members

Like static fields in C#, data members may be static in C++:

struct Player

{

 int32_t Score;

 static int32_t HighScore;

};

The meaning is the same as in C#. Each Player object doesn’t have
a HighScore but rather there is one HighScore for all Player objects.
Because it’s bound to the struct type, not an instance of the struct,
we use the scope resolution operator (::) as we did with scoped
enumerations to access the data member:

Player::HighScore = 0;

What we put inside the struct definition is actually just a declaration
of a variable, so we still need to define it outside the struct:

struct Player

{

 int32_t Score;

 static int32_t HighScore; // Declaration

};

// Definition

int32_t Player::HighScore;

// Incorrect definition

// This just creates a new HighScore variable

// We need the "Player::" part to refer to the

declaration

int32_t HighScore;

This also gives us an opportunity to initialize the variable:

int32_t Player::HighScore = 0;

Because the static data member inside the struct definition is just a
declaration, it can use other types that haven’t yet been defined as
long as they’re defined by the time we define the static data member:

// Declaration

struct Vec3;

struct Player

{

 int32_t Health;

 // Declaration

 static Vec3 Fastest;

};

// Definition

struct Vec3

{

 float x;

 float y;

 float z;

};

// Definition

Vec3 Player::Fastest;

If the static data member is const, we can initialize it inline. We’ll go
over const later in the book, but for now it’s similar to readonly in
C#.

struct Player

{

 int32_t Health;

 const static int32_t MaxHealth = 100;

};

We’re still allowed to put the definition outside the struct, but it’s
optional to do so. If we do, we can only put the initialization in one of
the two places:

// Option 1: initialize in the struct definition

struct Player

{

 int32_t Health;

 const static int32_t MaxHealth = 100;

};

const int32_t Player::MaxHealth;

// Option 2: initialize outside the struct definition

struct Player

{

 int32_t Health;

 const static int32_t MaxHealth;

};

const int32_t Player::MaxHealth = 100;

// Compiler error if initializing in both places

struct Player

{

 int32_t Health;

 const static int32_t MaxHealth = 100;

};

const int32_t Player::MaxHealth = 100;

Static data members may also be inline, much like with global
variables:

struct Player

{

 int32_t Health;

 inline static int32_t MaxHealth = 100;

};

In this case, we can’t put a definition outside of the struct:

struct Player

{

 int32_t Health;

 inline static int32_t MaxHealth = 100;

};

// Compiler error: can't define outside the struct

int32_t Player::MaxHealth;

Lastly, static data members can’t be bit fields. This would make no
sense since they’re not part of instances of the struct and aren’t even
necessarily located together in memory with other static data
members of the struct:

struct Flags

{

 // All of these are compiler errors

 // Static data members can't be bit fields

 static bool IsStarted : 1;

 static bool WonGame : 1;

 static bool GotHighScore : 1;

 static bool FoundSecret : 1;

 static bool PlayedMultiplayer : 1;

 static bool IsLoggedIn : 1;

 static bool RatedGame : 1;

 static bool RanBenchmark : 1;

};

To work around this, make a struct with non-static bit fields and
another struct with a static instance of the first struct:

struct FlagBits

{

 bool IsStarted : 1;

 bool WonGame : 1;

 bool GotHighScore : 1;

 bool FoundSecret : 1;

 bool PlayedMultiplayer : 1;

 bool IsLoggedIn : 1;

 bool RatedGame : 1;

 bool RanBenchmark : 1;

};

struct Flags

{

 static FlagBits Bits;

};

FlagBits Flags::Bits;

Flags::Bits.WonGame = true;

Disallowed Data Members

C++ forbids using some kinds of data members in structs. First, auto
is not allowed for the data type:

struct Bad

{

 // Compiler error: auto isn't allowed even if we

initialize it inline

 auto Val = 123;

};

An exception to this rule is when the data member is both static
and const:

struct Good

{

 // OK since data member is static and const

 static const auto Val = 123;

};

Next, while register is only deprecated for other kinds of variables,
it’s illegal for data members:

struct Bad

{

 // Compiler error: data members can't be register

variables

 register int Val = 123;

};

This is also true for other storage class specifiers like extern:

struct Bad

{

 // Compiler error: data members can't be extern

variables

 extern int Val = 123;

};

The entire struct can be declared with either storage class specifier
instead:

struct Good

{

 uint8_t Val;

};

register Good r;

extern Good e;

While we saw above that declared types that aren’t yet defined can
be used for static data members, this is not the case for non-static
data members:

struct Vec3;

struct Bad

{

 // Compiler error: Vec3 isn't defined yet

 Vec3 Pos;

};

As with other variables of types that are declared but not yet defined,
we are allowed to have pointers and references:

struct Vec3;

struct Good

{

 // OK to have a pointer to a type that's declared but

not yet defined

 Vec3* PosPointer;

 // OK to have an lvalue to a type that's declared but

not yet defined

 Vec3& PosLvalueReference;

 // OK to have an rvalue to a type that's declared but

not yet defined

 Vec3&& PosRvalueReference;

};

Nested Types

C++ allows us to nest types within structs just like we can in C#.
Let’s start with a scoped enumeration:

struct Character

{

 enum struct Type

 {

 Player,

 NonPlayer

 };

 Type Type;

};

Character c;

c.Type = Character::Type::Player;

Note how we use Character::Type to refer to Type within Character
and then ::Player to refer to an enumerator within Type.

Also note how we can have both a Type enumeration and a Type
data member. The two are disambiguated by the operator used to
access the content of the struct:

Character c;

Character* p = &c;

Character& r = c;

// . operator means "access data member"

auto t = c.Type;

t = r.Type;

// -> operator means "dereference pointer then access

data member"

t = p->Type;

// :: operator means "get something scoped to the type"

Character::Type t2;

Ambiguity arises if the data member is static and has the same
name as a nested type:

struct Character

{

 enum struct Type

 {

 Player,

 NonPlayer

 };

 static Type Type;

};

// Compiler error: Character::Type is ambiguous

// It could be either the scoped enumeration or the

static data member

Character::Type Character::Type =

Character::Type::Player;

We can also nest unscoped enumerations:

struct Character

{

 enum Type

 {

 Player,

 NonPlayer

 };

 Type Type;

} c;

// Optionally specify the unscoped enumeration type name

c.Type = Character::Type::Player;

// Or don't specify it

// Enumerators are added to the surrounding scope: the

struct

c.Type = Character::Player;

Finally, we can nest structs within structs. As with enumerations, this
can be used to contextualize them such as to clean up our Flags
example above:

struct Flags

{

 struct FlagBits

 {

 bool IsStarted : 1;

 bool WonGame : 1;

 bool GotHighScore : 1;

 bool FoundSecret : 1;

 bool PlayedMultiplayer : 1;

 bool IsLoggedIn : 1;

 bool RatedGame : 1;

 bool RanBenchmark : 1;

 };

 static FlagBits Bits;

};

Flags::FlagBits Flags::Bits;

We can combine this with anonymous structs to eliminate some of
the verbosity. If we do, we’ll need to use decltype in order to state
the type of the static variable when we define it outside the struct
since we didn’t give it an explicit name:

struct Flags

{

 // Unnamed struct with bit fields

 // The data member Bits is static

 static struct

 {

 bool IsStarted : 1;

 bool WonGame : 1;

 bool GotHighScore : 1;

 bool FoundSecret : 1;

 bool PlayedMultiplayer : 1;

 bool IsLoggedIn : 1;

 bool RatedGame : 1;

 bool RanBenchmark : 1;

 } Bits;

};

// The unnamed struct has no name we can just type

// Use decltype to refer to its type

decltype(Flags::Bits) Flags::Bits;

Flags::Bits.WonGame = true;

Of course we can continue to nest structs infinitly within other
structs, but it’s generally a good idea to keep it to two or three levels
and avoid resorting to anything like this:

struct S1

{

 struct S2

 {

 struct S3

 {

 struct S4

 {

 struct S5

 {

 uint8_t Val;

 };

 };

 };

 };

};

S1::S2::S3::S4::S5 s;

s.Val = 123;

Conclusion

We’re only just scratching the surface of C++ structs and already
they have quite a few more advanced features than their C#
counterparts:

Feature Example

Split declaration and definition struct S; struct S{};

Inline data member initializers struct S {int X=1, int Y=2};

Bit fields struct S {bool a:1; bool :6;
bool b:1;};

Immediate variables struct S {} s;

Anonymous structs struct {float X; float Y;}
pos2;

References to structs struct S {} s; S& lr = s; S&&
rr = S();

Automatic data member typing struct S {static const auto
X=1;};

Shared nested type and data
member name struct S {enum E{}; E E;};

11. Struct Functions

Member Functions

As in C#, structs in C++ may contain functions. These are called
“methods” in C# and “member functions” in C++. They look and work
essentially the same as in C#:

struct Vector2

{

 float X;

 float Y;

 float SqrMagnitude()

 {

 return this->X*this->X + this->Y*this->Y;

 }

};

Member functions are implicitly passed a pointer to the instance of
the struct they’re contained in. In this case, it’s type is Vector2*.
Other than using this->X or (*this).X instead of just this.X, its
usage is the same as in C#. It is also optional, again like C#:

float SqrMagnitude()

{

 return X*X + Y*Y;

}

Unlike C#, but in keeping with other C++ functions and with data
member initialization, we can split the function’s declaration and
definition. If we do so, we need to place the definition outside the
class:

struct Vector2

{

 float X;

 float Y;

 // Declaration

 float SqrMagnitude();

};

// Definition

float Vector2::SqrMagnitude()

{

 return X*X + Y*Y;

}

Notice that when we do this we need to specify where the function
we’re defining is declared. We do this by prefixing Vector2:: to the
beginning of the function’s name.

It’s very common to only declare member function declarations in a
struct definition. That struct definition is typically put in a header file
(e.g. Vector2.h) and the member function definitions are put into a
translation unit (e.g. Vector2.cpp). This cuts down compile times by
only compiling the member function definitions once while allowing
the member functions to be called by any file that #includes the
header file with the member function declaration.

Now that we have a member function, let’s call it!

Vector2 v;

v.X = 2;

v.Y = 3;

float sqrMag = v.SqrMagnitude();

DebugLog(sqrMag); // 13

Calling the member function works just like in C# and lines up with
how we access data members. If we had a pointer, we’d use ->
instead of .:

Vector2* p = &v;

float sqrMag = p->SqrMagnitude();

All the rules that apply to the global functions we’ve seen before
apply to member functions. This includes support for overloading:

struct Weapon

{

 int32_t Damage;

};

struct Potion

{

 int32_t HealAmount;

};

struct Player

{

 int32_t Health;

 void Use(Weapon weapon, Player& target)

 {

 target.Health -= weapon.Damage;

 }

 void Use(Potion potion)

 {

 Health += potion.HealAmount;

 }

};

Player player;

player.Health = 50;

Player target;

target.Health = 50;

Weapon weapon;

weapon.Damage = 10;

player.Use(weapon, target);

DebugLog(target.Health); // 40

Potion potion;

potion.HealAmount = 20;

player.Use(potion);

DebugLog(player.Health); // 70

Remember that member functions take an implicit this argument.
We need to be able to overload based on that argument in addition
to all the explicit arguments. It doesn’t make sense to overload on
the type of this, but C++ does provide us a way to overload based
on whether the member function is being called on an lvalue
reference or an rvalue reference:

struct Test

{

 // Only allow calling this on lvalue objects

 void Log() &

 {

 DebugLog("lvalue-only");

 }

 // Only allow calling this on rvalue objects

 void Log() &&

 {

 DebugLog("rvalue-only");

 }

 // Allow calling this on lvalue or rvalue objects

 // Note: not allowed if either of the above exist

 void Log()

 {

 DebugLog("lvalue or rvalue");

 }

};

// Pretend the "lvalue or rvalue" version isn't

defined...

// 'test' has a name, so it's an lvalue

Test test;

test.Log(); // lvalue-only

// 'Test()' doesn't have a name, so it's an rvalue

Test().Log(); // rvalue-only

We’ll go more into initialization of structs soon, but for now Test() is
a way to create an instance of a Test struct.

Finally, member functions may be static with similar syntax and
meaning to C#:

struct Player

{

 int32_t Health;

 static int32_t ComputeNewHealth(int32_t oldHealth,

int32_t damage)

 {

 return damage >= oldHealth ? 0 : oldHealth -

damage;

 }

};

To call this, we refer to the member function using the struct type
rather than an instance of the type. This is just like in C#, except that
we use :: instead of . as is normal for referring to the contents of a
type in C++:

DebugLog(Player::ComputeNewHealth(100, 15)); // 85

DebugLog(Player::ComputeNewHealth(10, 15)); // 0

Since static member functions don’t operate on a particular struct
object, they have no implicit this argument. This makes them
compatible with regular function pointers:

// Get a function pointer to the static member function

int32_t (*cnh)(int32_t, int32_t) =

Player::ComputeNewHealth;

// Call it

DebugLog(cnh(100, 15)); // 85

DebugLog(cnh(10, 15)); // 0

Overloaded Operators

Both C# and C++ allow a lot of operator overloading, but there are
also quite a few differences. Let’s start with something basic:

struct Vector2

{

 float X;

 float Y;

 Vector2 operator+(Vector2 other)

 {

 Vector2 result;

 result.X = X + other.X;

 result.Y = Y + other.Y;

 return result;

 }

};

Vector2 a;

a.X = 2;

a.Y = 3;

Vector2 b;

b.X = 10;

b.Y = 20;

Vector2 c = a + b;

DebugLog(a.X, a.Y); // 2, 3

DebugLog(b.X, b.Y); // 10, 20

DebugLog(c.X, c.Y); // 12, 23

Here we see an overloaded binary + operator. It looks just like a
member function except it’s name is operator+ instead of an
identifier like Use. This is different from C# where the overloaded
operator would be static and therefore need to take two
parameters. If a C#-style static approach is desired, the overloaded
operator may be declared outside the struct instead:

struct Vector2

{

 float X;

 float Y;

};

Vector2 operator+(Vector2 a, Vector2 b)

{

 Vector2 result;

 result.X = a.X + b.X;

 result.Y = a.Y + b.Y;

 return result;

}

// (usage is identical)

Another difference is that the overloaded operator may be called
directly by using operator+ in place of a member function name

when its defined inside the struct:

Vector2 d = a.operator+(b);

DebugLog(d.X, d.Y);

The following table compares which operators may be overloaded in
the two languages:

Operator C++ C#

+x Yes Yes

-x Yes Yes

!x Yes Yes

~x Yes Yes

x++ Yes Yes, but same for x++
and ++x

x-- Yes Yes, but same for x--
and --x

++x Yes Yes, but same for x++
and ++x

--x Yes Yes, but same for x--
and --x

true N/A Yes

false N/A Yes

x + y Yes Yes

x - y Yes Yes

Operator C++ C#

x * y Yes Yes

x / y Yes Yes

x % y Yes Yes

x ^ y Yes Yes

x && y Yes Yes

x | y Yes Yes

x = y Yes No

x < y Yes Yes, requires > too

x > y Yes Yes, requires < too

x += y Yes No, implicitly uses +

x -= y Yes No, implicitly uses -

x *= y Yes No, implicitly uses *

x /= y Yes No, implicitly uses /

x %= y Yes No, implicitly uses %

x ^= y Yes No, implicitly uses ^

x &= y Yes No, implicitly uses &

x |= y Yes No, implicitly uses |

x << y Yes Yes

x >> y Yes Yes

x >>= y Yes No, implicitly uses >>

Operator C++ C#

x <<= y Yes No, implicitly uses <<

x == y Yes Yes, requires != too

x != y Yes Yes, requires == too

x <= y Yes Yes, requires >= too

x >= y Yes Yes, requires <= too

x <=> y Yes N/A

x && y
Yes, without short-
circuiting

No, implicitly uses true
and false

x || y
Yes, without short-
circuiting

No, implicitly uses true
and false

x, y
Yes, without left-to-right
sequencing No

x->y Yes No

x(x) Yes No

x[i] Yes No, indexers instead

x?.[i] N/A No, indexers instead

x.y No No

x?.y N/A No

x::y No No

x ? y : z No No

x ?? y N/A No

Operator C++ C#

x ??= y N/A No

x..y N/A No

=> N/A No

as N/A No

await N/A No

checked N/A No

unchecked N/A No

default N/A No

delegate N/A No

is N/A No

nameof N/A No

new Yes No

sizeof No No

stackalloc N/A No

typeof N/A No

As in C#, the C++ language puts little restriction on the parameters,
return values, and functionality of overloaded operators. Instead,
both languages rely on conventions. As such, it'd be legal but very
strange to implement an overloaded operator like this:

struct Vector2

{

 float X;

 float Y;

 int32_t operator++()

 {

 return 123;

 }

};

Vector2 a;

a.X = 2;

a.Y = 3;

int32_t res = ++a;

DebugLog(res); // 123

One particularly interesting operator in the above table is x <=> y,
introduced in C++20. This is called the "three-way comparison" or
"spaceship" operator. This can be used in general, without operator
overloading, like so:

auto res = 1 <=> 2;

if (res < 0)

{

 DebugLog("1 < 2"); // This gets called

}

else if (res == 0)

{

 DebugLog("1 == 2");

}

else if (res > 0)

{

 DebugLog("1 > 2");

}

This is like most sort comparators where a negative value is returned
to indicate that the first argument is less than the second, a positive
value to indicate greater, and zero to indicate equality. The exact
type returned isn't specified other than that it needs to support these
three comparisons.

While it can be used directly like this, it's especially valuable for
operator overloading as it implies a canonical implementation of all
the other comparison operators: ==, !=, <, <=, >, and >=. That allows
us to write code that either uses the three-way comparison operator
directly or indirectly:

struct Vector2

{

 float X;

 float Y;

 float SqrMagnitude()

 {

 return this->X*this->X + this->Y*this->Y;

 }

 float operator<=>(Vector2 other)

 {

 return SqrMagnitude() - other.SqrMagnitude();

 }

};

int main()

{

 Vector2 a;

 a.X = 2;

 a.Y = 3;

 Vector2 b;

 b.X = 10;

 b.Y = 20;

 // Directly use <=>

 float res = a <=> b;

 if (res < 0)

 {

 DebugLog("a < b");

 }

 // Indirectly use <=>

 if (a < b)

 {

 DebugLog("a < b");

 }

}

Conclusion

This chapter we've seen C++'s version of methods, called member
functions, and overloaded operators. Member functions are quite
similar to their C# counterparts, but do have differences such as an
optional declaration-definition split, overloading based on lvalue and
rvalue objects, and conversion to function pointers.

Overloaded operators also have their similarities and differences to
C#. In C++, they may be placed inside the struct and used like a
non-static member function or outside the struct and used like a
static one. When inside the struct, they can be called explicitly like
with x.operator+(10). Quite a few more operators may be
overloaded, and often with finer-grain control. Lastly, the three-way
comparison ("spaceship") operator allows for removing a lot of
boilerplate when overloading comparisons.

12. Constructors and Destructors

General Constructors

First things first, we’re not going to deeply discuss actually calling
any of these constructors in this chapter. Initialization is a complex
topic that requires a full chapter of its own. So we’ll write the
constructors in this chapter’s chapter and call them in next chapter’s
chapter.

Basic C++ constructors are so similar to constructors in C# that the
syntax is identical and has the same meaning!

struct Vector2

{

 float X;

 float Y;

 Vector2(float x, float y)

 {

 X = x;

 Y = y;

 }

};

Anything more advanced than this simple example is going to
diverge a lot between the languages. First, as with member
functions, we can split the constructor declaration from the definition
by placing the definition outside the struct. This is commonly used to

put the declaration in a header file (.h) and the definition in a
translation unit (.cpp) to reduce compile times.

struct Vector2

{

 float X;

 float Y;

 Vector2(float x, float y);

};

Vector2::Vector2(float x, float y)

{

 X = x;

 Y = y;

}

C++ provides a way to initialize data members before the function
body runs. These are called “initializer lists.” They are placed
between the constructor’s signature and its body.

struct Ray2

{

 Vector2 Origin;

 Vector2 Direction;

 Ray2(float originX, float originY, float directionX,

float directionY)

 : Origin(originX, originY), Direction{directionX,

directionY}

 {

 }

};

The initializer list starts with a : and then lists a comma-delimited list
of data members. Each has its initialization arguments in either
parentheses (Origin(originX, originY)) or curly braces
(Direction{directionX, directionY}). The order doesn’t matter
since the order the data members are declared in the struct is
always used.

We can also use an initializer list to initialize primitive types. Here’s
an alternate version of Vector2 that does that:

struct Vector2

{

 float X;

 float Y;

 Vector2(float x, float y)

 : X(x), Y(y)

 {

 }

};

The initializer list overrides data members’ default initializers. This
means the following version of Vector2 has the x and y arguments
initialized to the constructor arguments, not 0:

struct Vector2

{

 float X = 0;

 float Y = 0;

 Vector2(float x, float y)

 : X(x), Y(y)

 {

 }

};

An initializer list can also be used to call another constructor, which
helps reduce code duplication and “helper” functions (typically
named Init or Setup). Here’s one in Ray2 that defaults the origin to
(0, 0):

struct Ray2

{

 Vector2 Origin;

 Vector2 Direction;

 Ray2(float originX, float originY, float directionX,

float directionY)

 : Origin(originX, originY), Direction{directionX,

directionY}

 {

 }

 Ray2(float directionX, float directionY)

 : Ray2(0, 0, directionX, directionY)

 {

 }

};

If an initializer list calls another constructor, it can only call that
constructor. It can’t also initialize data members:

Ray2(float directionX, float directionY)

 // Compiler error: constructor call must stand alone

 : Origin(0, 0), Ray2(0, 0, directionX, directionY)

{

}

Default Constructors

A “default constructor” has no parameters. In C#, the default
constructor for a struct is always available and can’t even be defined
by our code. C++ does allow us to write default constructors for our
structs:

struct Vector2

{

 float X;

 float Y;

 Vector2()

 {

 X = 0;

 Y = 0;

 }

};

In C#, this constructor is always generated for all structs by the
compiler. It simply initializes all fields to their default values, 0 in this
case.

// C#

Vector2 vecA = new Vector2(); // 0, 0

Vector2 vecB = default(Vector2); // 0, 0

Vector2 vecC = default; // 0, 0

C++ compilers also generate a default constructor for us. Like C#, it
also initializes all fields to their default values.

C++ structs also behave in the same way that C# classes behave: if
a struct defines a constructor then the compiler won’t generate a
default constructor. That means that this version of Vector2 doesn’t
get a compiler-generated default constructor:

struct Vector2

{

 float X;

 float Y;

 Vector2(float x, float y)

 : X(x), Y(y)

 {

 }

};

If we try to create an instance of this Vector2 without providing the
two float arguments, we’ll get a compiler error:

// Compiler error: no default constructor so we need to

provide two floats

Vector2 vec;

If we want to get the default constructor back, we have two options.
First, we can define it ourselves:

struct Vector2

{

 float X;

 float Y;

 Vector2()

 {

 }

 Vector2(float x, float y)

 : X(x), Y(y)

 {

 }

};

Second, we can use = default to tell the compiler to generate it for
us:

struct Vector2

{

 float X;

 float Y;

 Vector2() = default;

 Vector2(float x, float y)

 : X(x), Y(y)

 {

 }

};

We can also put = default outside the struct, usually in a translation
unit (.cpp file):

struct Vector2

{

 float X;

 float Y;

 Vector2();

 Vector2(float x, float y)

 : X(x), Y(y)

 {

 }

};

Vector2::Vector2() = default;

Sometimes we want to do the reverse and stop the compiler from
generating a default constructor. Normally we do this by writing a
constructor of our own, but if we don’t want to do that then we can
use = delete:

struct Vector2

{

 float X;

 float Y;

 Vector2() = delete;

};

This can’t be put outside the struct:

struct Vector2

{

 float X;

 float Y;

 Vector2();

};

// Compiler error

// Must be inside the struct

Vector2::Vector2() = delete;

If there’s no default constructor, either generated by the compiler or
written by hand, then the compiler also won’t generate a default
constructor for structs that have that kind of data member:

// Compiler doesn't generate a default constructor

// because Vector2 doesn't have a default constructor

struct Ray2

{

 Vector2 Origin;

 Vector2 Direction;

};

As we saw above, initializer lists are particularly useful when writing
constructors for types like Ray2. Without them, we get a compiler
error:

struct Ray2

{

 Vector2 Origin;

 Vector2 Direction;

 Ray2(float originX, float originY, float directionX,

float directionY)

 // Compiler error

 // Origin and Direction don't have a default

constructor

 // The (float, float) constructor needs to be

called

 // That needs to be done here in the initializer

list

 {

 // Don't have Vector2 objects to initialize

 // They needed to be initialized in the

initializer list

 Origin.X = originX;

 Origin.Y = originY;

 Origin.X = directionX;

 Origin.Y = directionY;

 }

};

With initializer lists, we can call the non-default constructor to
initialize these data members just before the constructor body runs:

struct Ray2

{

 Vector2 Origin;

 Vector2 Direction;

 Ray2(float originX, float originY, float directionX,

float directionY)

 : Origin(originX, originY), Direction{directionX,

directionY}

 {

 }

};

Copy and Move Constructors

A copy constructor is a constructor that takes an lvalue reference to
the same type of struct. This is typically a const reference. We’ll
cover const more later in the book, but for now it can be thought of
as “read only.”

Similarly, a move constructor takes an rvalue reference to the same
type of struct. Here’s all four of these in Vector2:

struct Vector2

{

 float X;

 float Y;

 // Default constructor

 Vector2()

 {

 X = 0;

 Y = 0;

 }

 // Copy constructor

 Vector2(const Vector2& other)

 {

 X = other.X;

 Y = other.Y;

 }

 // Copy constructor (parameter is not const)

 Vector2(Vector2& other)

 {

 X = other.X;

 Y = other.Y;

 }

 // Move constructor

 Vector2(const Vector2&& other)

 {

 X = other.X;

 Y = other.Y;

 }

 // Move constructor (parameter is not const)

 Vector2(Vector2&& other)

 {

 X = other.X;

 Y = other.Y;

 }

};

Unlike C#, the C++ compilers will generate a copy constructor if we
don’t define any copy or move constructors and all the data
members can be copy-constructed. Likewise, the compiler will
generate a move constructor if we don’t define any copy or move
constructors and all the data members can be move-constructed. So
the compiler will generate both a copy and a move constructor for
Vector2 and Ray2 here:

struct Vector2

{

 float X;

 float Y;

 // Compiler generates copy constructor:

 // Vector2(const Vector2& other)

 // : X(other.X), Y(other.Y)

 // {

 // }

 // Compiler generates move constructor:

 // Vector2(const Vector2&& other)

 // : X(other.X), Y(other.Y)

 // {

 // }

};

struct Ray2

{

 Vector2 Origin;

 Vector2 Direction;

 // Compiler generates copy constructor:

 // Ray2(const Ray2& other)

 // : Origin(other.Origin),

Direction(other.Direction)

 // {

 // }

 // Compiler generates move constructor:

 // Ray2(const Ray2&& other)

 // : Origin(other.Origin),

Direction(other.Direction)

 // {

 // }

};

The parameter to these compiler-generated copy and move
constructors is const if there are const copy and move constructors
available to call and non-const if there aren’t.

As with default constructors, we can use = default to tell the
compiler to generate copy and move constructors:

struct Vector2

{

 float X;

 float Y;

 // Inside struct

 Vector2(const Vector2& other) = default;

};

struct Ray2

{

 Vector2 Origin;

 Vector2 Direction;

 Ray2(Ray2&& other);

};

// Outside struct

// Explicitly defaulted move constructor can't take const

Ray2::Ray2(Ray2&& other) = default;

We can also use =delete to disable compiler-generated copy and
move constructors:

struct Vector2

{

 float X;

 float Y;

 Vector2(const Vector2& other) = delete;

 Vector2(const Vector2&& other) = delete;

};

Destructors

C# classes can have finalizers, often called destructors. C# structs
cannot, but C++ structs can.

Unlike constructors, which are pretty similar between the two
languages, C++ destructors are extremely different. These
differences have huge impacts on how C++ code is designed and
written.

Syntactically, C++ destructors look the same as C# class
finalizers/destructors: we just put a ~ before the struct name and take
no parameters.

struct File

{

 FILE* handle;

 // Constructor

 File(const char* path)

 {

 // fopen() opens a file

 handle = fopen(path, "r");

 }

 // Destructor

 ~File()

 {

 // fclose() closes the file

 fclose(handle);

 }

};

We can also put the definition outside the struct:

struct File

{

 FILE* handle;

 // Constructor

 File(const char* path)

 {

 // fopen() opens a file

 handle = fopen(path, "r");

 }

 // Destructor declaration

 ~File();

};

// Destructor definition

File::~File()

{

 // fclose() closes the file

 fclose(handle);

}

The destructor is usually called implicitly, but it can be called
explicitly:

File file("myfile.txt");

file.~File(); // Call destructor

The basic purpose of both C# finalizers and C++ destructors is the
same: do some cleanup when the object goes away. In C#, an object
“goes away” after it’s garbage-collected. The timing of when the
finalizer is called, if it is called at all, is highly complicated, non-
deterministic, and multi-threaded.

In C++, an object’s destructor is simply called when its lifetime ends:

void OpenCloseFile()

{

 File file("myfile.txt");

 DebugLog("file opened");

 // Compiler generates: file.~File();

}

This is ironclad. The language guarantees that the destructor gets
called no matter what. Consider an exception, which we’ll cover in
more depth later in the book but acts similarly to C# exceptions:

void OpenCloseFile()

{

 File file("myfile.txt");

 if (file.handle == nullptr)

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/destructors
https://ericlippert.com/2015/05/18/when-everything-you-know-is-wrong-part-one/

 {

 DebugLog("file filed to open");

 // Compiler generates: file.~File();

 throw IOException();

 }

 DebugLog("file opened");

 // Compiler generates: file.~File();

}

No matter how file goes out of scope, its destructor is called first.

Even a goto based on runtime computation can’t get around the
destructor:

void Foo()

{

 label:

 File file("myfile.txt");

 if (RollRandomNumber() == 3)

 {

 // Compiler generates: file.~File();

 return;

 }

 shouldReturn = true;

 // Compiler generates: file.~File();

 goto label;

}

To briefly see how this impacts the design of C++ code, let’s add a
GetSize member function to File so it can do something useful. Let’s
also add some exception-based error handling:

struct File

{

 FILE* handle;

 File(const char* path)

 {

 handle = fopen(path, "r");

 if (handle == nullptr)

 {

 throw IOException();

 }

 }

 long GetSize()

 {

 long oldPos = ftell(handle);

 if (oldPos == -1)

 {

 throw IOException();

 }

 int fseekRet = fseek(handle, 0, SEEK_END);

 if (fseekRet != 0)

 {

 throw IOException();

 }

 long size = ftell(handle);

 if (size == -1)

 {

 throw IOException();

 }

 fseekRet = fseek(handle, oldPos, SEEK_SET);

 if (fseekRet != 0)

 {

 throw IOException();

 }

 return size;

 }

 ~File()

 {

 fclose(handle);

 }

};

We can use this to get the size of the file like so:

long GetTotalSize()

{

 File fileA("myfileA.txt");

 File fileB("myfileB.txt");

 long sizeA = fileA.GetSize();

 long sizeB = fileA.GetSize();

 long totalSize = sizeA + sizeB;

 return totalSize;

}

The compiler generates several destructor calls for this. To see them
all, let’s see a pseudo-code version of what the constructor
generates:

long GetTotalSize()

{

 File fileA("myfileA.txt");

 try

 {

 File fileB("myfileB.txt");

 try

 {

 long sizeA = fileA.GetSize();

 long sizeB = fileA.GetSize();

 long totalSize = sizeA + sizeB;

 fileB.~File();

 fileA.~File();

 return totalSize;

 }

 catch (...) // Catch all types of exceptions

 {

 fileB.~File();

 throw; // Re-throw the exception to the outer

catch

 }

 }

 catch (...) // Catch all types of exceptions

 {

 fileA.~File();

 throw; // Re-throw the exception

 }

}

In this expanded view, we see that the compiler generates destructor
calls in every possible place where fileA or fileB could end their
lifetimes. It’s impossible for us to forget to call the destructor
because the compiler thoroughly adds all the destructor calls for us.
We know by design that neither file handle will ever leak.

Another aspect of destructors is also visible here: they’re called on
objects in the reverse order that the constructors are called. Because
we declared fileA first and fileB second, the constructor order is
fileA then fileB and the destructor order is fileB then fileA.

The same ordering goes for the data members of a struct:

struct TwoFiles

{

 File FileA;

 File FileB;

};

void Foo()

{

 // If we write this code...

 TwoFiles tf;

 // The compiler generates constructor calls: A then B

 // Pseudo-code: can't really call a constructor

directly

 tf.FileA();

 tf.FileB();

 // Then destructor calls: B then A

 tf.~FileB();

 tf.~FileA();

}

This explains why we can’t change the order of data members in an
initializer list: the compiler needs to be able to generate the reverse
order of destructor calls no matter what the constructor does.

Finally, the compiler generates a destructor implicitly:

struct TwoFiles

{

 File FileA;

 File FileB;

 // Compiler-generated destructor

 ~TwoFiles()

 {

 FileB.~File();

 FileA.~File();

 }

};

We can use = default to explicitly tell it to do this:

// Inside the struct

struct TwoFiles

{

 File FileA;

 File FileB;

 ~TwoFiles() = default;

};

// Outside the struct

struct TwoFiles

{

 File FileA;

 File FileB;

 ~TwoFiles();

};

TwoFiles::~TwoFiles() = default;

And we can stop the compiler from generating one with = delete:

struct TwoFiles

{

 File FileA;

 File FileB;

 ~TwoFiles() = delete;

};

The compiler generates a destructor as long as we haven’t written
one and all of the data members can be destructed.

Conclusion

At their most basic, constructors are the same in C# and C++. The
two languages quickly depart though with implicitly or explicitly
compiler-generated default, copy, and move constructors, support for
writing custom default constructors, strict initialization ordering, and
initializer lists.

Destructors are starkly different from C# finalizers/destructors.
They’re called predictibly as soon as the object’s lifetime ends, rather
than on another thread long after the object is released or perhaps
never called at all. The paradigm is similar to C#’s using
(IDisposable), but there’s no need to add the using part and no way
to forget it. They also strictly order destruction in the reverse of
construction and provide us the option to generate or not generate
destructors for us.

13. Initialization

Explicit Constructors

Before we get to initialization, we need to talk a little more about how
struct objects are created. First, all of the constructors we write may
be optionally declared as explicit:

struct Vector2

{

 float X;

 float Y;

 explicit Vector2(const Vector2& other)

 {

 X = other.X;

 Y = other.Y;

 }

};

In C++20, this can be conditional on a compile-time constant
expression put into parentheses after the explicit keyword:

struct Vector2

{

 float X;

 float Y;

 explicit (2 > 1) Vector2(const Vector2& other)

 {

 X = other.X;

 Y = other.Y;

 }

};

When a constructor is explicit, it’s no longer considered a
“converting constructor.” As we’ll see below, some forms of
initialization will no longer allow the constructor to be called implicitly.

User-Defined Conversion Operators

As with C#, we can write our own conversion operators from a struct
to any other type:

struct Vector2

{

 float X;

 float Y;

 operator bool()

 {

 return X != 0 || Y != 0;

 }

};

Also as in C#, these can be explicit.

struct Vector2

{

 float X;

 float Y;

 explicit operator bool()

 {

 return X != 0 || Y != 0;

 }

};

They can also be conditionally explicit as of C++20:

struct Vector2

{

 float X;

 float Y;

 explicit (2 > 1) operator bool()

 {

 return X != 0 || Y != 0;

 }

};

There’s no implicit keyword like we have in C#. To make one
implicit, just don’t add explicit.

In C#, user-defined conversion operators are static and take a
parameter of the same type as the struct they’re defined in. In C++,
they’re non-static and this is used implicitly or explicitly instead of
the parameter.

Like other overloaded operators, they may be called explicitly. It’s
rare to see this, but it’s allowed:

Vector2 v1;

v1.X = 2;

v1.Y = 4;

bool b = v1.operator bool();

Initialization Types

C++ classifies initialization into the following types:

Default
Aggregate
Constant
Copy
Direct
List
Reference
Value
Zero

The rules for how a type works frequently defers to the rules for how
another type works. This is similar to a function calling another
function. It creates a dependency of one type on another type. These
dependencies frequently form cycles in the graph, which looks
roughly like this:

This means that as we go through the initialization types we’re going
to refer to other initialization types that we haven’t seen yet. Feel free
to jump ahead to the referenced type or come back to revisit a type
after reading about its references later on in the chapter.

As for terminology, we often say that a variable is “X-initialized” to
mean that it is initialized using the rules of the “X” initialization type.
For example, “MyVar is direct-initialized” means “MyVar is initialized
according to the rules of the direct initialization type.”

Default Initialization

Default initialization happens when a variable is declared with no
initializer:

T object;

It also happens when calling a constructor that doesn’t mention a
data member:

struct HasDataMember

{

 T Object;

 int X;

 HasDataMember()

 : X(123) // No mention of Object

 {

 }

};

If the type (T) is a struct, its default constructor is called. If it’s an
array, every element of the array is default-initialized:

struct ConstructorLogs

{

 ConstructorLogs()

 {

 DebugLog("default");

 }

};

ConstructorLogs single; // Prints "default"

ConstructorLogs array[3]; // Prints "default", "default",

"default"

For all other types, nothing happens. This includes primitives,
enums, and pointers. Using one of these objects is undefined
behavior and may cause severe errors since the compiler can
generate any code it wants to.

float f;

DebugLog(f); // Undefined behavior!

Default initialization isn’t allowed for these kinds of variables if
they’re const since there would be no way to initialize them later:

void Foo()

{

 const float f; // Compiler error: default initializer

does nothing

}

One exception is for static variables, including both static data
members of structs and global variables. These are zero-initialized:

const float f; // OK: this is a global variable

struct HasStatic

{

 static float X;

};

float HasStatic::X; // OK: this is a static data member

It is also allowed if there’s a default constructor to call because that
initializes the variable:

const HasDataMember single; // OK: calls default

constructor

struct NoDefaultConstructor

{

 NoDefaultConstructor() = delete;

};

const NoDefaultConstructor ndc; // Compiler error: no

default constructor

References, both lvalue and rvalue, are never default-initialized.
They have their own initialization type which we’ll cover below:
reference initialization.

Copy Initialization

Copy initialization has several forms:

// Assignment style

T object = other;

// Function call

func(other)

// Return value

return other;

// Array assigned to curly braces

T array[N] = {other};

For the first three forms, only one object is involved. That object’s
copy constructor is called with other being passed in as the
argument:

struct Logs

{

 Logs() = default;

 Logs(const Logs& logs)

 {

 DebugLog("copy");

 }

};

Logs Foo(Logs a)

{

 Logs b = a; // "copy" for assignment style

 return a; // "copy" for return value

}

Logs x;

Foo(x); // "copy" for function call

This is no longer allowed if the copy constructor is explicit:

struct Logs

{

 Logs() = default;

 explicit Logs(const Logs& logs)

 {

 DebugLog("copy");

 }

};

Logs Foo(Logs a)

{

 Logs b = a; // Compiler error: copy constructor is

explicit

 return a; // Compiler error: copy constructor is

explicit

}

Logs x;

Foo(x); // Compiler error: copy constructor is explicit

User-defined conversion operators can also be called by the same
three forms of copy initialization:

struct ConvertLogs

{

 ConvertLogs() = default;

 operator bool()

 {

 DebugLog("convert");

 return true;

 }

};

bool Foo(bool b)

{

 ConvertLogs x;

 return x; // "convert" for return value

}

ConvertLogs x;

bool b = x; // "convert" for assignment style

Foo(x); // "convert" for function call

The return value of the user-defined conversion operator, a bool in
this example, is then used to direct-initialize the variable.

As with the copy constructor, making the user-defined conversion
operator explicit disables copy initialization and makes all of these
“convert” lines generate compiler errors just like when we made the
copy constructor explicit.

For non-struct types like primitives, enums, and pointers, the value is
simply copied:

int x = y;

The last form deals with arrays. This happens during aggregate
initialization.

Aggregate Initialization

Aggregate initialization has the following forms:

// Assign curly braces

T object = { val1, val2 };

// No-assign curly braces

T object{ val1, val2 };

// Assign curly braces with "designators" (data member

names)

T object = { .designator=val1, .designator=val2 };

// No-assign curly braces with "designators" (data member

names)

T object{ .designator=val1, .designator=val2 };

// Parentheses

T object(val1, val2);

All of these forms work on types (T) that are considered
“aggregates.” That includes arrays and structs that don’t have any
constructors except those using = default.

The elements of these arrays and data members of these structs are
copy-initialized with the given values: val1, val2, etc. This is done in
index order starting at the first element for arrays. With structs, this is

done in the order that data members are declared, just like a
constructor’s initializer list does.

Designators are available as of C++20. They’re similar to C#’s
“object initializers”: Vector2 vec = {X=2, Y=4};. They must be in the
same order as the struct’s data members and all values must have
designators.

struct Vector2

{

 float X;

 float Y;

};

Vector2 v1 = { 2, 4 };

DebugLog(v1.X, v1.Y); // 2, 4

Vector2 v2{2, 4};

DebugLog(v2.X, v2.Y); // 2, 4

Vector2 v3 = { .X=2, .Y=4 };

DebugLog(v3.X, v3.Y); // 2, 4

Vector2 v4{ .X=2, .Y=4 };

DebugLog(v4.X, v4.Y); // 2, 4

Vector2 v5(2, 4);

DebugLog(v5.X, v5.Y); // 2, 4

It’s a compiler error to pass more values than there are data
members or array elements:

Vector2 v5 = {2, 4, 6}; // Compiler error: too many data

members

float a1[2] = {2, 4, 6}; // Compiler error: too many

array elements

We can, however, pass fewer values than data members or array
elements. The remaining data members are initialized with their
default member initializers. If they don’t have default member
initializers, they’re copy-initialized from an empty list ({}).

struct DefaultedVector2

{

 float X = 1;

 float Y;

};

DefaultedVector2 dv1 = {2};

DebugLog(dv1.X, dv1.Y); // 2, 0

float a2[2] = {2};

DebugLog(a2[0], a2[1]); // 2, 0

If a data member is an lvalue or rvalue reference, not passing it is a
compiler error because it could never be initialized later on due to
how references work.

struct HasRef

{

 int X;

 int& R;

};

HasRef hr = {123}; // Compiler error: reference data

member not initialized

There are special rules for aggregate-initializing arrays from string
literals:

// a1 has length 4 and contains: 'a', 'b', 'c', 0

char a1[4] = "abc";

// Length is optional. This is the same as a1.

char a2[] = "abc";

// Curly braces are optional. This is the same as a1.

char a3[] = {"abc"};

// Compiler error: array too small to fit the string

literal's contents

char a4[1] = "abc";

// Extra array elements are zero-initialized

// a5 has length 6 and contains: 'a', 'b', 'c', 0, 0, 0

char a5[6] = "abc";

List Initialization

There are two sub-types of list initialization. First, “direct list
initialization” has these forms:

// Named variable

T object{val1, val2};

// Unnamed temporary variable

T{val1, val2}

struct MyStruct

{

 // Data member

 T member{val1, val2};

};

MyStruct::MyStruct()

 // Initializer list entry

 : member{val1, val2}

{

}

Second, there’s “copy list initialization” with these forms:

// Named variable

T object = {val1, val2};

// Function call

func({val1, val2})

// Return value

return {val1, val2};

// Overloaded subscript operator call

object[{val1, val2}]

// Assignment

object = {val1, val2}

struct MyStruct

{

 // Data member

 T member = {val1, val2};

};

The compiler chooses what to do by essentially using a pretty long
series of if–else decisions.

First, if there’s a single value of the same type then it copy-initializes
for copy list initialization and direct-initializes for direct list
initialization:

Vector2 vec;

vec.X = 2;

vec.Y = 4;

// Direct list initialization direct-initializes vecA

with vec

Vector2 vecA{vec};

DebugLog(vecA.X, vecA.Y); // 2, 4

// Copy list initialization copy-initializes vecB with

vec

Vector2 vecB = {vec};

DebugLog(vecB.X, vecB.Y); // 2, 4

Second, if the variable is a character array and there’s a single value
of the same character type then the variable is aggregate-initialized:

char array[1] = {'x'}; // Aggregate-initialized

DebugLog(array[0]); // x

Third, if the variable to initialize is an aggregate type then it’s
aggregate-initialized:

Vector2 vec = {2, 4}; // Aggregate-initialized

DebugLog(vec.X, vec.Y); // 2, 4

Fourth, if no values are passed in the curly braces and the variable
to initialize is a struct with a default constructor then it’s value-
initialized:

struct NonAggregateVec2

{

 float X;

 float Y;

 NonAggregateVec2()

 {

 X = 2;

 Y = 4;

 }

};

NonAggregateVec2 vec = {}; // Value-initialized

DebugLog(vec.X, vec.Y); // 2, 4

Fifth, if the variable has a constructor that takes only the Standard
Library’s std::initializer_list type then that constructor is called.
We haven’t covered any of the Standard Library yet, but the details
of this type aren’t really important at this point. Suffice to say that this
is the C++ equivalent to initializing collections in C#: List<int> list
= new List<int> { 2, 4 };.

struct InitListVec2

{

 float X;

 float Y;

 InitListVec2(std::initializer_list<float> vals)

 {

 X = *vals.begin();

 Y = *(vals.begin() + 1);

 }

};

InitListVec2 vec = {2, 4};

DebugLog(vec.X, vec.Y); // 2, 4

Sixth, if any constructor matches the passed values then the one
that matches best is called:

struct MultiConstructorVec2

{

 float X;

 float Y;

 MultiConstructorVec2(float x, float y)

 {

 X = x;

 Y = y;

 }

 MultiConstructorVec2(double x, double y)

 {

 X = x;

 Y = y;

 }

};

MultiConstructorVec2 vec1 = {2.0f, 4.0f}; // Call (float,

float) version

DebugLog(vec1.X, vec1.Y); // 2, 4

MultiConstructorVec2 vec2 = {2.0, 4.0}; // Call (double,

double) version

DebugLog(vec2.X, vec2.Y); // 2, 4

Seventh, if the variable is a (scoped or unscoped) enumeration and
a single value of that type is passed with direct list initialization, the
variable is initialized with that value:

enum struct Color : uint32_t

{

 Blue = 0x0000ff

};

Color c = {Color::Blue};

DebugLog(c); // 255

Eighth, if the variable isn’t a struct, only one value is passed, and
that value isn’t a reference, then the variable is direct-initialized:

float f = {3.14f};

DebugLog(f); // 3.14

Ninth, if the variable isn’t a struct, the curly braces have only one
value, and the variable isn’t a reference or is a reference to the type
of the single value, then the variable is direct-initialized for direct list

initialization or copy-initialized for copy list initialization with the
value:

float f = 3.14f;

float& r1{f}; // Direct list initialization direct-

initializes

DebugLog(r1); // 3.14

float& r2 = {f}; // Copy list initialization copy-

initializes

DebugLog(r2); // 3.14

float r3{f}; // Direct list initialization direct-

initializes

DebugLog(r3); // 3.14

float r4 = {f}; // Copy list initialization copy-

initializes

DebugLog(r4); // 3.14

Tenth, if the variable is a reference to a different type than the one
value passed then a temporary reference to the value’s type is
created, list-initialized, and bound to the variable. The variable must
be const for this to work:

float f = 3.14;

const int32_t& r1 = f;

DebugLog(r1); // 3

int32_t& r2 = f; // Compiler error: not const

DebugLog(r2);

Eleventh, and lastly, if no values are passed then the variable is
value-initialized:

float f = {};

DebugLog(f); // 0

One final detail to note is that the values passed in the curly braces
are evaluated in order. This is unlike the arguments passed to a
function which are evalutated in an order determined by the
compiler.

Reference Initialization

As mentioned above, references have their own type of initialization.
Here are the forms it takes:

// lvalue reference variables

T& ref = object;

T& ref = {val1, val2};

T& ref(object);

T& ref{val1, val2};

// rvalue reference variables

T&& ref = object;

T&& ref = {val1, val2};

T&& ref(object);

T&& ref{val1, val2};

// Function calls

/* Assume */ void func(T& val); /* or */ void func(T&&

val);

func(object)

func({val1, val2})

// Return values

T& func() { T t; return t; }

T&& func() { return T(); }

// Constructor initializer lists

MyStruct::MyStruct()

 : lvalueRef(object)

 , rvalueRef(object)

{

}

If curly braces are provided, the reference is list-initialized:

float&& f = {3.14f};

DebugLog(f); // 3.14

Otherwise, the reference follows reference initialization rules. These
are effectively another series of if–else decisions, but a much
shorter series than with list initialization.

First, for lvalue references of the same type the reference simply
binds to the passed object:

float f = 3.14f;

float& r = f;

DebugLog(r); // 3.14

When the variable is an lvalue reference but it has a different type
than the passed object, if there’s a user-defined conversion function
then it’s called and the variable is bound to the return value:

float pi = 3.14f;

struct ConvertsToPi

{

 operator float&()

 {

 return pi;

 }

};

ConvertsToPi ctp;

float& r = ctp; // User-defined conversion operator

called

DebugLog(r); // 3.14

In all other cases the passed expression is evaluated into a
temporary variable and the reference is bound to that:

float Add(float a, float b)

{

 return a + b;

}

// Call function, store return value in temporary, bind

reference to temporary

float&& sum = Add(2, 4);

DebugLog(sum); // 6

Temporary variables created by reference initialization have their
lifetimes extended to match the lifetime of the reference. There are a

few exceptions. First, returned references are always “dangling” as
what they refer to ends its lifetime when the function exits. Second,
and similarly, references to function arguments also end their lifetime
when the function exits.

float&& Dangling1()

{

 return 3.14f; // Returned temporary ends its lifetime

here

}

float& Dangling2(float x)

{

 return x; // Returned argument ends its lifetime here

}

DebugLog(Dangling1()); // Undefined behavior

DebugLog(Dangling2(3.14f)); // Undefined behavior

Third, the reference data members or elements of an aggregate only
have their lifetime extended when curly braces, not parentheses, are
used:

struct HasRvalueRef

{

 float&& Ref;

};

// Curly braces used. Lifetime of float with 3.14f value

extended.

HasRvalueRef hrr1{3.14f};

DebugLog(hrr1.Ref); // 3.14

// Parentheses used. Lifetime of float with 3.14f value

NOT extended.

HasRvalueRef hrr2(3.14f);

DebugLog(hrr2.Ref); // Undefined behavior. Ref has ended

its lifetime.

Value Initialization

Value initialization can look like this:

// Variable

T object{};

// Temporary variable (i.e. it has no name)

T()

T{}

// Initialize a data member in an initializer list

MyStruct::MyStruct()

 : member1() // Parentheses version

 , member2{} // Curly braces version

{

}

Value initialization always defers to another type of initialization.
Here’s how it decides which type to use:

If curly braces are used and the variable is an aggregate, it’s
aggregate-initialized.

Vector2 vec{2, 4}; // Aggregate initialization

DebugLog(vec.X, vec.Y); // 2, 4

If the variable is a struct that doesn’t have a default constructor but it
does have a constructor that takes only a std::initializer_list,
the variable is list-initialized with an empty list (i.e. {}).

struct InitListVec2

{

 float X;

 float Y;

 InitListVec2(std::initializer_list<float> vals)

 {

 int index = 0;

 float x = 0;

 float y = 0;

 for (float cur : vals)

 {

 switch (index)

 {

 case 0: x = cur; break;

 case 1: y = cur; break;

 }

 }

 X = x;

 Y = y;

 }

};

InitListVec2 vec{}; // List initialization (passes empty

list)

DebugLog(vec.X, vec.Y); // 0, 0

If the variable is a struct with no default constructor, it’s default-
initialized.

struct Vector2

{

 float X;

 float Y;

 Vector2() = delete;

};

Vector2 vec{}; // Default-initialized

DebugLog(vec.X, vec.Y); // 0, 0

If the default constructor was generated by the compiler, the variable
is zero-initialized then direct-initialized if any of the data members
have default initializers (i.e. float X = 0;).

struct Vector2

{

 float X = 2;

 float Y = 4;

};

Vector2 vec{}; // Zero initialization then direct

initialization

DebugLog(vec.X, vec.Y); // 2, 4

If the variable is an array, each element is value-initialized.

float arr[2]{}; // Elements value-initialized

DebugLog(arr[0], arr[1]); // 0, 0

If none of the above apply, the variable is zero-initialized.

float x{}; // Zero-initialized

DebugLog(x); // 0

Direct initialization

Here are the forms direct initialization can take:

// Parentheses with single value

T object(val);

// Parentheses with multiple values

T object(val1, val2);

// Curly braces with single value

T object{val};

MyStruct::MyStruct()

 // Parentheses in initializer list

 : member(val1, val2)

{

}

All of these look for a constructor matching the passed values. If one
is found, the one that matches best is called to initialize the variable.

struct MultiConstructorVec2

{

 float X;

 float Y;

 MultiConstructorVec2(float x, float y)

 {

 X = x;

 Y = y;

 }

 MultiConstructorVec2(double x, double y)

 {

 X = x;

 Y = y;

 }

};

MultiConstructorVec2 vec1{2.0f, 4.0f}; // Call (float,

float) version

DebugLog(vec1.X, vec1.Y); // 2, 4

MultiConstructorVec2 vec2{2.0, 4.0}; // Call (double,

double) version

DebugLog(vec2.X, vec2.Y); // 2, 4

If no constructor matches or the variable isn’t a struct but it is an
aggregate, the variable is aggregate-initialized.

struct Vector2

{

 float X;

 float Y;

};

// No constructor matches, but Vector2 is an aggregate

Vector2 vec{2, 4}; // Aggregate initialization

DebugLog(vec.X, vec.Y); // 2, 4

As of C++20, the variable can be an array. In this case the rules of
aggregate initialization apply. For example, passing too many values
is a compiler error.

float a1[2]{2, 4}; // Aggregate initialization

DebugLog(a1[0], a1[1]); // 2, 4

float a2[2]{2, 4, 6, 8}; // Compiler error: too many

values

There’s one type-specific exception to this. If the variable is a bool
and the value is nullptr, the variable becomes false.

bool b{nullptr};

DebugLog(b); // false

One common mistake with the parentheses forms of direct
initialization is to create ambiguity between initialization of a variable
and a function declaration. Consider this code:

struct Enemy

{

 float X;

 float Y;

};

struct Vector2

{

 float X;

 float Y;

 Vector2() = default;

 Vector2(Enemy enemy)

 {

 X = enemy.X;

 Y = enemy.Y;

 }

};

Vector2 defaultEnemySpawnPoint(Enemy());

The last line is ambiguous. The naming makes us think it’s a variable
with type Vector2 named defaultEnemySpawnPoint that’s being
direct-initialized with a value-initialized temporary Enemy variable.

Another way to read that line is that it declares a function named
defaultEnemySpawnPoint that returns a Vector2 and takes an
unnamed pointer to a function that takes no parameters and returns
an Enemy. In that alternate reading, we could write code like this:

// Definition of a function that satisfies the function

pointer type

Enemy cb()

{

 return {};

}

// Definition of the above declaration, intentional or

not

Vector2 defaultEnemySpawnPoint(Enemy())

{

 return {};

}

// It can be called with 'cb' as the function pointer

argument

defaultEnemySpawnPoint(cb);

The compiler always chooses the function declaration when this
ambiguity arises. That means the above code is valid and actually
works, but we’ll get errors if we try to use defaultEnemySpawnPoint
like a variable when it’s actually a function:

// Compiler error: defaultEnemySpawnPoint is a function

// Functions have no X or Y data members to get

DebugLog(defaultEnemySpawnPoint.X,

defaultEnemySpawnPoint.Y);

Thankfully, it’s easy to resolve the ambiguity by simply using the
curly braces form of direct-initialization because the function pointer
syntax doesn’t use curly braces:

Vector2 defaultEnemySpawnPoint(Enemy{});

DebugLog(defaultEnemySpawnPoint.X,

defaultEnemySpawnPoint.Y); // 0, 0

Constant Initialization

Constant initialization has just two forms:

T& ref = constantExpression;

T object = constantExpression;

Both of these only apply when the variable is both const and static,
such as for global variables and static struct data members.
Otherwise, the variable is zero-initialized.

struct Player

{

 static const int32_t MaxHealth;

 int32_t Health;

};

// Constant-initialize a data member

const int32_t Player::MaxHealth = 100;

// Constant-initialize a global reference

const int32_t& defaultHealth = Player::MaxHealth;

This initialization happens before all other initialization, so it’s safe to
read from these variables during other kinds of initialization. That’s
even the case if that other initialization appears before the constant
initialization:

struct Player

{

 static const int32_t MaxHealth;

 int32_t Health;

};

// 2) Aggregate initialization

Player localPlayer{Player::MaxHealth};

// 1) Constant initialization

const int32_t Player::MaxHealth = 100;

const int32_t& defaultHealth = Player::MaxHealth;

// 3) Normal code, not initialization

DebugLog(localPlayer.Health); // 100

Zero Initialization

Lastly, we have zero initialization. Unlike all the other types, it
doesn’t have any explicit forms. Instead, as we’ve seen above, other
types of initialization may result in zero initialization:

// Static variable that's not constant-initialized

// Zero initialization still happens before other types

of initialization

static T object;

// During value initialization for non-struct types

// Includes struct data members and array elements

T();

T t = {};

T{};

// When initializing an array from a string literal

that's too short

// Remaining elements are zero-initialized

char array[N] = "";

Zero initialization sets primitives and all padding bits of structs to 0. It
doesn’t do anything to references.

Conclusion

As we’ve now seen, initialization is a far more complex topic in C++
than it is in C#. The main reason is that C++ provides far more
features. Supporting default constructors, temporary variables,
arrays, references, function pointers, const, string literals, and so
forth requires a fair amount more syntax.

14. Inheritance

Base Structs

The basic syntax for inheritance, also called derivation, looks the
same in C++ for structs as it does in C# for classes. We just add :
BaseType after the name of the struct:

struct GameEntity

{

 static const int32_t MaxHealth = 100;

 int32_t Health = MaxHealth;

 float GetHealthPercent()

 {

 return ((float)Health) / MaxHealth;

 }

};

struct MovableGameEntity : GameEntity

{

 float Speed = 0;

};

When declaring, not defining, a struct that inherits from another
struct, we omit the base struct name:

struct MovableGameEntity; // No base struct name

struct MovableGameEntity : GameEntity

{

 float Speed = 0;

};

The meaning of this inheritance is the same in C++ as in C#:
MovableGameEntity “is a” GameEntity. That means all the data
members and member functions of GameEntity are made part of
MovableGameEntity as a sub-object. We can write code to use the
contents of both the parent and the child struct:

MovableGameEntity mge{};

mge.Health = 50;

DebugLog(mge.Health, mge.Speed, mge.GetHealthPercent());

// 50, 0, 0.5

Normally, any object must have a size of at least one byte. One
exception to this rule is when a base struct has no non-static data
members. In that case, it may add zero bytes to the size of the
structs that derive from it. An exception to this exception is if the first
non-static data member is also the base struct type.

// Has no non-static data members

struct Empty

{

 void SayHello()

 {

 DebugLog("hello");

 }

};

// Size not increased by deriving from Empty

struct Vector2 : Empty

{

 float X;

 float Y;

};

// Size increased because first non-static data member is

also an Empty

struct ExceptionToException : Empty

{

 Empty E;

 int32_t X;

};

void Foo()

{

 Vector2 vec{};

 DebugLog(sizeof(vec)); // 8 (size not increased)

 vec.SayHello(); // "hello"

 DebugLog(sizeof(ExceptionToException)); // 8 (size

increased from 4!)

}

The “is a” relationship continues in that pointers and references to a
MovableGameEntity are compatible with pointers and references to
an GameEntity:

MovableGameEntity mge{};

GameEntity* pge = &mge; // Pointers are compatible

GameEntity& rge = mge; // References are compatible

DebugLog(mge.Health, pge->Health, rge.Health); // 100,

100, 100

Derived structs can have members with the same names as their
base structs. For example, ArmoredGameEntity might get extra health
from its armor:

struct ArmoredGameEntity : GameEntity

{

 static const int32_t MaxHealth = 100;

 int32_t Health = MaxHealth;

};

This introduces ambiguity when referring to the Health member of an
ArmoredGameEntity: is it the data member declared in GameEntity or
ArmoredGameEntity? The compiler chooses the member of the type
being referred to:

// Referring to ArmoredGameEntity, so use Health in

ArmoredGameEntity

ArmoredGameEntity age{};

DebugLog(age.Health); // 50

// Referring to GameEntity, so use Health in GameEntity

GameEntity& ge = age;

DebugLog(ge->Health); // 100

To resolve this ambiguity, we can explicitly refer to the members of a
particular sub-object in the inheritance hierarchy using the scope
resolution operator: StructType::Member.

struct ArmoredGameEntity : GameEntity

{

 static const int32_t MaxHealth = 50;

 int32_t Health = MaxHealth;

 void Die()

 {

 Health = 0; // Health in ArmoredGameEntity

 GameEntity::Health = 0; // Health in GameEntity

 }

};

ArmoredGameEntity age{};

GameEntity& ge = age;

DebugLog(age.Health, ge.Health); // 50, 100

age.Die();

DebugLog(age.Health, ge.Health); // 0, 0

Although it’s uncommon to do so, we can also refer to specific
structs from outside the struct hierarchy:

ArmoredGameEntity age{};

ArmoredGameEntity* page = &age;

// Refer to Health in GameEntity with

age.GameEntity::Health

DebugLog(age.Health, age.GameEntity::Health); // 50, 100

age.Die();

// Refer to Health in GameEntity via a pointer with page-

>GameEntity::Health

DebugLog(age.Health, page->GameEntity::Health); // 0, 0

This is sort of like using base in C#, except that we can refer to any
struct in the hierarchy rather than just the immedate base class type.

struct MagicArmoredGameEntity : ArmoredGameEntity

{

 static const int32_t MaxHealth = 20;

 int32_t Health = MaxHealth;

};

MagicArmoredGameEntity mage{};

DebugLog(mage.Health); // 20

DebugLog(mage.ArmoredGameEntity::Health); // 50

DebugLog(mage.GameEntity::Health); // 100

Constructors and Destructors

As in C#, constructors are called from the top of the hierarchy to the
bottom. Unlike C#’s non-deterministic destructors/finalizers, C++
destructors are called in the same order as constructors. Recall that
data members are constructed in declaration order and destructed in
the reverse order. These two properties combine to give the
following deterministic order:

struct LogLifecycle

{

 const char* str;

 LogLifecycle(const char* str)

 : str(str)

 {

 DebugLog(str, "constructor");

 }

 ~LogLifecycle()

 {

 DebugLog(str, "destructor");

 }

};

struct GameEntity

{

 LogLifecycle a{"GameEntity::a"};

 LogLifecycle b{"GameEntity::b"};

 GameEntity()

 {

 DebugLog("GameEntity constructor");

 }

 ~GameEntity()

 {

 DebugLog("GameEntity destructor");

 }

};

struct ArmoredGameEntity : GameEntity

{

 LogLifecycle a{"ArmoredGameEntity::a"};

 LogLifecycle b{"ArmoredGameEntity::b"};

 ArmoredGameEntity()

 {

 DebugLog("ArmoredGameEntity constructor");

 }

 ~ArmoredGameEntity()

 {

 DebugLog("ArmoredGameEntity destructor");

 }

};

void Foo()

{

 ArmoredGameEntity age{};

 DebugLog("--after variable declaration--");

} // Note: destructor of 'age' called here

// Logs printed:

// GameEntity::a, constructor

// GameEntity::b, constructor

// GameEntity constructor

// ArmoredGameEntity::a, constructor

// ArmoredGameEntity::b, constructor

// ArmoredGameEntity constructor

// --after variable declaration--

// ArmoredGameEntity destructor

// ArmoredGameEntity::b, destructor

// ArmoredGameEntity::a, destructor

// GameEntity destructor

// GameEntity::b, destructor

// GameEntity::a, destructor

As we saw above, the default constructor of base structs is called
implicitly. However, if there’s no default constructor then it must be
called explicitly. The syntax looks like it does in C# except the base
struct type is used instead of the keyword base:

struct GameEntity

{

 static const int32_t MaxHealth = 100;

 int32_t Health;

 GameEntity(int32_t health)

 {

 Health = health;

 }

};

struct ArmoredGameEntity : GameEntity

{

 static const int32_t MaxArmor = 100;

 int32_t Armor = 0;

 ArmoredGameEntity()

 : GameEntity(MaxHealth)

 {

 }

};

This is actually just part of the initializer list that we use to initialize
data members:

struct ArmoredGameEntity : GameEntity

{

 static const int32_t MaxArmor = 100;

 int32_t Armor = 0;

 ArmoredGameEntity()

 : GameEntity(MaxHealth), Armor(MaxArmor)

 {

 }

};

Since the order of initialization is always as above, it doesn’t matter
what order we put the initializers in. This is true for both data
members and base structs:

struct ArmoredGameEntity : GameEntity

{

 static const int32_t MaxArmor = 100;

 int32_t Armor = 0;

 ArmoredGameEntity()

 // Order doesn't matter

 // GameEntity is still initialized before Armor

 : Armor(MaxArmor), GameEntity(MaxHealth)

 {

 }

};

Multiple Inheritance

Unlike C#, C++ supports structs that derive from multiple structs:

struct HasHealth

{

 static const int32_t MaxHealth = 100;

 int32_t Health = MaxHealth;

};

struct HasArmor

{

 static const int32_t MaxArmor = 20;

 int32_t Armor = MaxArmor;

};

// Player derives from both HasHealth and HasArmor

struct Player : HasHealth, HasArmor

{

 static const int32_t MaxLives = 3;

 int32_t NumLives = MaxLives;

};

This means HasHealth and HasArmor are sub-objects of Player and
Player “is a” HasHealth and “is a” HasArmor. We use it the same way
that we use single-inheritance:

// Members of both base structs are accessible

Player p{};

DebugLog(p.Health, p.Armor, p.NumLives); // 100, 20, 3

// Can get a reference to a base struct

HasHealth& hh = p;

DebugLog(hh.Health); // 100

// Can get a pointer to a base struct

HasArmor* ha = &p;

DebugLog(ha->Armor); // 20

This explains why there is no base keyword in C++: there may be
multiple bases. When explicitly referencing a member of a sub-
object, we always use its name:

Player p{};

// Access members in the HasHealth sub-object

DebugLog(p.HasHealth::Health); // 100

// Access members in the HasArmor sub-object

DebugLog(p.HasArmor::Armor); // 20

// Access members in the Player sub-object

DebugLog(p.Player::NumLives); // 3

Now let’s re-introduce the LogLifecycle utility struct and see how
multiple inheritance impacts the order of constructors and
destructors:

struct LogLifecycle

{

 const char* str;

 LogLifecycle(const char* str)

 : str(str)

 {

 DebugLog(str, "constructor");

 }

 ~LogLifecycle()

 {

 DebugLog(str, "destructor");

 }

};

struct HasHealth

{

 LogLifecycle a{"HasHealth::a"};

 LogLifecycle b{"HasHealth::b"};

 static const int32_t MaxHealth = 100;

 int32_t Health = MaxHealth;

 HasHealth()

 {

 DebugLog("HasHealth constructor");

 }

 ~HasHealth()

 {

 DebugLog("HasHealth destructor");

 }

};

struct HasArmor

{

 LogLifecycle a{"HasArmor::a"};

 LogLifecycle b{"HasArmor::b"};

 static const int32_t MaxArmor = 20;

 int32_t Armor = MaxArmor;

 HasArmor()

 {

 DebugLog("HasArmor constructor");

 }

 ~HasArmor()

 {

 DebugLog("HasArmor destructor");

 }

};

struct Player : HasHealth, HasArmor

{

 LogLifecycle a{"Player::a"};

 LogLifecycle b{"Player::b"};

 static const int32_t MaxLives = 3;

 int32_t NumLives = MaxLives;

 Player()

 {

 DebugLog("Player constructor");

 }

 ~Player()

 {

 DebugLog("Player destructor");

 }

};

void Foo()

{

 Player p{};

 DebugLog("--after variable declaration--");

} // Note: destructor of 'p' called here

// Logs printed:

// HasHealth::a, constructor

// HasHealth::b, constructor

// HasHealth constructor

// HasArmor::a, constructor

// HasArmor::b, constructor

// HasArmor constructor

// Player::a, constructor

// Player::b, constructor

// Player constructor

// --after variable declaration--

// Player destructor

// Player::b, destructor

// Player::a, destructor

// HasArmor destructor

// HasArmor::b, destructor

// HasArmor::a, destructor

// HasHealth destructor

// HasHealth::b, destructor

// HasHealth::a, destructor

We see here that base structs’ constructors are called in the order
that they’re derived from: HasHealth then HasArmor in this example.
Their destructors are called in the reverse order. This is analogous to
data members, which are constructed in declaration order and
destructed in the reverse order.

Multiple inheritance can introduce an ambiguity known as the
“diamond problem,” referring to the shape of the inheritance
hierarchy. For example, consider these structs:

struct Top

{

 const char* Id;

 Top(const char* id)

 : Id(id)

 {

 }

};

struct Left : Top

{

 const char* Id = "Left";

 Left()

 : Top("Top of Left")

 {

 }

};

struct Right : Top

{

 const char* Id = "Right";

 Right()

 : Top("Top of Right")

 {

 }

};

struct Bottom : Left, Right

{

 const char* Id = "Bottom";

};

Given a Bottom, it’s easy to refer to its Id and the Id of the Left and
Right sub-objects:

Bottom b{};

DebugLog(b.Id); // Bottom

DebugLog(b.Left::Id); // Left

DebugLog(b.Right::Id); // Right

However, both the Left and Right sub-objects have a Top sub-
object. This is therefore ambiguous and causes a compiler error:

Bottom b{};

// Compiler error: ambiguous. Top sub-object of Left or

Right?

DebugLog(b.Top::Id);

To disambiguate, we need to explicitly refer to either the Left or
Right sub-object. One way is to take a reference to these sub-
objects:

Bottom b{};

Left& left = b;

DebugLog(left.Top::Id); // Top of Left

Right& right = b;

DebugLog(right.Top::Id); // Top of Right

Virtual Inheritance

If we don’t want our Bottom object to include two Top sub-objects
then we can use “virtual inheritance” instead. This is just like normal
inheritance, except that the compiler will generate only one sub-
object for a common base struct. We enable it by adding the
keyword virtual before the name of the struct we’re deriving from:

struct Top

{

 const char* Id = "Top Default";

};

struct Left : virtual Top

{

 const char* Id = "Left";

};

struct Right : virtual Top

{

 const char* Id = "Right";

};

struct Bottom : virtual Left, virtual Right

{

 const char* Id = "Bottom";

};

// Top refers to the same sub-object in Bottom, Left, and

Right

Bottom b{};

Left& left = b;

Right& right = b;

DebugLog(b.Top::Id); // Top Default

DebugLog(left.Top::Id); // Top Default

DebugLog(right.Top::Id); // Top Default

// Changing Left's Top changes the one and only Top sub-

object

left.Top::Id = "New Top of Left";

DebugLog(b.Top::Id); // New Top of Left

DebugLog(left.Top::Id); // New Top of Left

DebugLog(right.Top::Id); // New Top of Left

// Same with Right's Top

right.Top::Id = "New Top of Right";

DebugLog(b.Top::Id); // New Top of Right

DebugLog(left.Top::Id); // New Top of Right

DebugLog(right.Top::Id); // New Top of Right

Note that virtual inheritance and regular inheritance can be mixed. In
this we get one sub-object for all the common virtual base structs
and one sub-object each for all the non-virtual base structs. For
example, this Bottom has two Top sub-objects: one for the virtual
inhertiance via Left and Right and one for the non-virtual
inheritance via Middle:

struct Top

{

 const char* Id = "Top Default";

};

struct Left : virtual Top

{

 const char* Id = "Left";

};

struct Middle : Top

{

 const char* Id = "Middle";

};

struct Right : virtual Top

{

 const char* Id = "Right";

};

struct Bottom : virtual Left, Middle, virtual Right

{

 const char* Id = "Bottom";

};

// Top refers to the same sub-object in Bottom, Left, and

Right

// It does not refer to Middle's Top sub-object

Bottom b{};

Left& left = b;

Middle& middle = b;

Right& right = b;

DebugLog(left.Top::Id); // Top Default

DebugLog(middle.Top::Id); // Top Default

DebugLog(right.Top::Id); // Top Default

// Changing Left's Top changes the virtual Top sub-object

left.Top::Id = "New Top of Left";

DebugLog(left.Top::Id); // New Top of Left

DebugLog(middle.Top::Id); // Top Default (note: not

changed)

DebugLog(right.Top::Id); // New Top of Left

// Same with Right's Top

right.Top::Id = "New Top of Right";

DebugLog(left.Top::Id); // New Top of Right

DebugLog(middle.Top::Id); // Top Default (note: not

changed)

DebugLog(right.Top::Id); // New Top of Right

// Changing Middle's Top changes the non-virtual Top sub-

object

middle.Top::Id = "New Top of Middle";

DebugLog(left.Top::Id); // New Top of Right (note: not

changed)

DebugLog(middle.Top::Id); // New Top of Middle

DebugLog(right.Top::Id); // New Top of Right (note: not

changed)

Virtual Functions

Member functions in C++ may be virtual. This is directly analogous
to virtual methods in C#. Here’s how a base Weapon struct’s Attack
member function can be overridden by a derived Bow struct’s Attack
member function:

struct Enemy

{

 int32_t Health = 100;

};

struct Weapon

{

 int32_t Damage = 0;

 explicit Weapon(int32_t damage)

 {

 Damage = damage;

 }

 virtual void Attack(Enemy& enemy)

 {

 enemy.Health -= Damage;

 }

};

struct Bow : Weapon

{

 Bow(int32_t damage)

 : Weapon(damage)

 {

 }

 virtual void Attack(Enemy& enemy)

 {

 enemy.Health -= Damage;

 }

};

Enemy enemy{};

DebugLog(enemy.Health); // 100

Weapon weapon{10};

weapon.Attack(enemy);

DebugLog(enemy.Health); // 90

Bow bow{20};

bow.Attack(enemy);

DebugLog(enemy.Health); // 70

Weapon& weaponRef = bow;

weaponRef.Attack(enemy);

DebugLog(enemy.Health); // 50

Weapon* weaponPointer = &bow;

weaponPointer->Attack(enemy);

DebugLog(enemy.Health); // 30

Notice that the default behavior in C++ is for a member function is to
override a base struct’s virtual function. This differs from C# where
the default is to create a new function with the same name, similar to
if the new keyword were used to declare the method.

To override in C#, we must use the override keyword. In C++, this is
optional and mainly used so they compiler will generate an error as a
reminder in case our overriding member function no longer matches
with a virtual function in a base struct. The override keyword comes
after the function signature, not before as in C#:

struct Bow : Weapon

{

 Bow(int32_t damage)

 : Weapon(damage)

 {

 }

 virtual void Attack(Enemy& enemy) override

 {

 enemy.Health -= Damage;

 }

 // Compiler error: no base struct has this virtual

function to override

 virtual float SimulateAttack(Enemy& enemy) override

 {

 return enemy.Health - Damage;

 }

};

C++ also has a replacement for C#’s abstract keyword for when we
don’t want to provide an implementation of a member function at all.
These member functions are called “pure virtual” and have an = 0
after them instead of a body:

struct Weapon

{

 int32_t Damage = 0;

 explicit Weapon(int32_t damage)

 {

 Damage = damage;

 }

 virtual void Attack(Enemy& enemy) = 0;

};

Like in C# where the presence of any abstract methods means we
must tag the class itself abstract, a C++ class with any pure virtual
member functions is implicitly abstract and therefore can’t be
instantiated:

// Compiler error: Weapon is an abstract struct and can't

be instantiated

Weapon weapon{10};

Because, unlike C#, overloaded operators are non-static, they too
may be virtual. In this example, the += operator levels up a Weapon:

struct Weapon

{

 int32_t Damage = 0;

 explicit Weapon(int32_t damage)

 {

 Damage = damage;

 }

 virtual void operator+=(int32_t numLevels)

 {

 Damage += numLevels;

 }

};

struct Bow : Weapon

{

 int32_t Range;

 Bow(int32_t damage, int32_t range)

 : Weapon(damage), Range(range)

 {

 }

 virtual void operator+=(int32_t numLevels) override

 {

 // Explicitly call base struct's overloaded

operator

 Weapon::operator+=(numLevels);

 Range += numLevels;

 }

};

Bow bow{20, 10};

DebugLog(bow.Damage, bow.Range); // 20, 10

bow += 5;

DebugLog(bow.Damage, bow.Range); // 25, 15

Weapon& weaponRef = bow;

weaponRef += 5;

DebugLog(bow.Damage, bow.Range); // 30, 20

Also unlike C#, user-defined conversion operators are non-static so
they too may be virtual:

struct Weapon

{

 int32_t Damage = 0;

 explicit Weapon(int32_t damage)

 {

 Damage = damage;

 }

 virtual operator int32_t()

 {

 return Damage;

 }

};

struct Bow : Weapon

{

 int32_t Range;

 Bow(int32_t damage, int32_t range)

 : Weapon(damage), Range(range)

 {

 }

 virtual operator int32_t() override

 {

 // Explicitly call base struct's user-defined

conversion operator

 return Weapon::operator int32_t() + Range;

 }

};

Bow bow{20, 10};

Weapon& weaponRef = bow;

int32_t bowVal = bow;

int32_t weaponRefVal = weaponRef;

DebugLog(bowVal, weaponRefVal); // 30, 30

Finally, destructors may be virtual. This is very common as it
ensures that derived struct destructors will always be called:

struct ReadOnlyFile

{

 FILE* ReadFileHandle;

 ReadOnlyFile(const char* path)

 {

 ReadFileHandle = fopen(path, "r");

 }

 virtual ~ReadOnlyFile()

 {

 fclose(ReadFileHandle);

 ReadFileHandle = nullptr

 }

};

struct FileCopier : ReadOnlyFile

{

 FILE* WriteFileHandle;

 FileCopier(const char* path, const char*

writeFilePath)

 : ReadOnlyFile(path)

 {

 WriteFileHandle = fopen(writeFilePath, "w");

 }

 virtual ~FileCopier()

 {

 fclose(WriteFileHandle);

 WriteFileHandle = nullptr;

 }

};

FileCopier copier("/path/to/input/file",

"/path/to/output/file");

// Calling a virtual destructor on a base struct

// Calls the derived struct's destructor

// If this was non-virtual, only the ReadOnlyFile

destructor would be called

ReadOnlyFile& rof = copier;

rof.~ReadOnlyFile();

A pure virtual destructor is also a common way of marking a struct
as abstract when no other members are good candidates to be
made pure virtual. This is like marking a class abstract in C# without
marking any of its contents abstract.

Stopping Inheritance and Overrides

C# has the sealed keyword that can be applied to a class to stop
other classes from deriving it. C++ has the final keyword for this
purpose. It’s placed after the struct name and before any base struct
names:

// OK to derive from Vector1

struct Vector1

{

 float X;

};

// Compiler error if deriving from Vector2

struct Vector2 final : Vector1

{

 float Y;

};

// Compiler error: Vector2 is final

struct Vector3 : Vector2

{

 float Z;

};

The sealed keyword in C# can also be applied to methods and
properties that override to stop further overriding. The final
keyword in C++ also serves this purpose. Like the override
keyword, it’s placed after the member function signature. The two

keywords can be used together as they have different, but related
meanings.

struct Vector1

{

 float X;

 // Allows overriding

 virtual void DrawPixel(float r, float g, float b)

 {

 GraphicsLibrary::DrawPixel(X, 0, r, g, b);

 }

};

struct Vector2 : Vector1

{

 float Y;

 // Overrides DrawPixel in Vector1

 // Stops overriding in derived structs

 virtual void DrawPixel(float r, float g, float b)

override final

 {

 GraphicsLibrary::DrawPixel(X, Y, r, g, b);

 }

};

struct Vector3 : Vector2

{

 float Z;

 // Compiler error: DrawPixel in base struct (Vector2)

is final

 virtual void DrawPixel(float r, float g, float b)

override

 {

 GraphicsLibrary::DrawPixel(X/Z, Y/Z, r, g, b);

 }

};

C# Equivalency

We’ve already seen the C++ equivalents for C# concepts like
abstract and sealed classes as well as abstract, virtual,
override, and sealed methods. C# has several other features that
have no explicit C++ equivalent. Instead, these are idiomatically
implemented with general struct features.

First, C# has a dedicated interface concept. It’s like a base class
that can’t have fields, can’t have non-abstract methods, is abstract,
and can be multiply inherited by classes. In C++, we always have
multiple inheritance so all we need to do is not add any data
members or non-abstract member functions:

// Like an interface:

// * Has no data members

// * Has no non-abstract member functions

// * Is abstract (due to Log being pure virtual)

// * Enables multiple inheritance (always enabled in C++)

struct ILoggable

{

 virtual void Log() = 0;

};

// To "implement" an "interface," just derive and

override all member functions

struct Vector2 : ILoggable

{

 float X;

 float Y;

 Vector2(float x, float y)

 : X(x), Y(y)

 {

 }

 virtual void Log() override

 {

 DebugLog(X, Y);

 }

};

// Use an "interface," not a "concrete class"

void LogTwice(ILoggable& loggable)

{

 loggable.Log();

 loggable.Log();

}

Vector2 vec{2, 4};

LogTwice(vec); // 2, 4 then 2, 4

Next we have partial classes in C#. These allow us to split the
contents of a class across multiple files. We can mimic this in C++ in
at least two ways. First, and far more commonly, we put the struct’s
definition in a header file (e.g. .h) and split its member definitions
across multiple translation unit (e.g. .cpp) files.

// In Player.h

struct Player

{

 const static int32_t MaxHealth = 100;

 const static int32_t MaxLives = 3;

 int32_t Health = MaxHealth;

 int32_t NumLives = MaxLives;

 float PosX = 0;

 float PosY = 0;

 float DirX = 0;

 float DirY = 0;

 float Speed = 0;

 void TakeDamage(int32_t amount);

 void Move(float time);

};

// In PlayerCombat.cpp

#include "Player.h"

void Player::TakeDamage(int32_t amount)

{

 Health -= amount;

}

// In PlayerMovement.cpp

#include "Player.h"

void Player::Move(float time)

{

 float distance = Speed * time;

 PosX += DirX * distance;

 PosY += DirY * distance;

}

// In Game.cpp

#include "Player.h"

Player player;

player.DirX = 1;

player.Speed = 1;

player.TakeDamage(10);

DebugLog(player.Health); // 90

player.Move(5);

DebugLog(player.PosX, player.PosY); // 5, 0

Another, much less common, approach is to use virtual inheritance
to compose multiple structs into one:

// In PlayerShared.h

struct PlayerShared

{

 const static int32_t MaxHealth = 100;

 const static int32_t MaxLives = 3;

 int32_t Health = MaxHealth;

 int32_t NumLives = MaxLives;

 float PosX = 0;

 float PosY = 0;

 float DirX = 0;

 float DirY = 0;

 float Speed = 0;

};

// In PlayerCombat.h

#include "PlayerShared.h"

struct PlayerCombat : virtual PlayerShared

{

 void TakeDamage(int32_t amount)

 {

 Health -= amount;

 }

};

// In PlayerMovement.h

#include "PlayerShared.h"

struct PlayerMovement : virtual PlayerShared

{

 void Move(float time)

 {

 float distance = Speed * time;

 PosX += DirX * distance;

 PosY += DirY * distance;

 }

};

// In Player.h

#include "PlayerCombat.h"

#include "PlayerMovement.h"

struct Player : virtual PlayerCombat, virtual

PlayerMovement

{

};

// In Game.cpp

#include "Player.h"

Player player;

player.DirX = 1;

player.Speed = 1;

player.TakeDamage(10);

DebugLog(player.Health); // 90

player.Move(5);

DebugLog(player.PosX, player.PosY); // 5, 0

This approach allows the parts (PlayerCombat and PlayerMovement)
to be re-composed to form other types, such as a StationaryPlayer
that can fight but not move:

// In StationaryPlayer.h

#include "PlayerCombat.h"

struct StationaryPlayer : virtual PlayerCombat

{

};

// In Game.cpp

#include "StationaryPlayer.h"

StationaryPlayer stationary;

stationary.TakeDamage(10); // OK, Health now 90

stationary.Move(5); // Compiler error: Move isn't a

member function

Finally, all C# classes have System.Object as their ultimate base
class. C# structs, and other value types, are implicitly “boxed” to
System.Object when used in particular ways such as calling the
GetHashCode method. C++ has no ultimate base struct like this, but
one can be created and all other structs can derive from it.

// In Object.h

// Ultimate base struct

struct Object

{

 virtual int32_t GetHashCode()

 {

 return HashBytes((char*)this, sizeof(*this));

 }

};

// In Player.h

#include "Object.h"

// Derives from ultimate base struct: Object

struct Player : Object

{

 const static int32_t MaxHealth = 100;

 const static int32_t MaxLives = 3;

 int32_t Health = MaxHealth;

 int32_t NumLives = MaxLives;

 float PosX = 0;

 float PosY = 0;

 float DirX = 0;

 float DirY = 0;

 float Speed = 0;

 void TakeDamage(int32_t amount);

 void Move(float time);

 // Can override if desired, like in C#

 virtual int32_t GetHashCode() override

 {

 return 123;

 }

};

// In Vector2.h

#include "Object.h"

// Derives from ultimate base struct: Object

struct Vector2 : Object

{

 float X;

 float Y;

 // Can NOT override if desired, like in C#

 // virtual int32_t GetHashCode() override

};

// Can pass any struct to this

// Because we made every struct derive from Object

void LogHashCode(Object& obj)

{

 DebugLog(obj.GetHashCode());

}

// Can pass a Player because it derives from Object

Player player;

LogHashCode(player);

// Can pass a Vector2 because it derives from Object

Vector2 vector;

LogHashCode(vector);

Generic solutions for boxing are likewise possible and we’ll cover
those techniques later in the book.

Conclusion

C++ struct inheritance is in many ways a superset of C# class
inheritance. It goes above and beyond with support for multiple
inheritance, virtual inheritance, virtual overloaded operators, virtual
user-defined conversion functions, and skip-level sub-object
specifications like Level1::X from within Level3.

In other ways, C++ inheritance is more stripped down than C#
inheritance. It doesn’t have dedicated support for interfaces or
partial classes and it doesn’t mandate an ultimate base struct like
Object in C#. To recover these features, we rely on the extended
feature set’s increased flexiblity to essentially build our own
interfaces, partial classes, and Object type.

15. Struct and Class Permissions

Access Specifiers

Like in C#, the members of structs in C++ can have their access
level changed by the public, protected, and private access
specifiers. It’s written a little differently in C++ though. Instead of
being included like a modifier of a single member (e.g. public void
Foo() {}), access specifiers in C++ are written like a label (e.g.
public:) and apply until the next access specifier:

struct Player

{

// The default access specifier is public, so TakeDamage

is public

 void TakeDamage(int32_t amount)

 {

 Health -= amount;

 }

// Change the access specifier to private

private:

// Health is private

 int32_t Health;

// NumLives is private

 int32_t NumLives;

// Change the access specifier back to public

public:

// Heal is public

 void Heal(int32_t amount)

 {

 Health += amount;

 }

// GetExtraLife is public

 void GetExtraLife()

 {

 NumLives++;

 }

};

While uncommon in C++, we can make this feel more like C# by
explicitly adding the access specifier before every member:

struct Player

{

 public: void TakeDamage(int32_t amount)

 {

 Health -= amount;

 }

 private: int32_t Health;

 private: int32_t NumLives;

 public: void Heal(int32_t amount)

 {

 Health += amount;

 }

 public: void GetExtraLife()

 {

 NumLives++;

 }

};

The meaning of public, private, and protected are similar to C#:

Access Specifier Member Accessibile From

public Anywhere

protected Only within the struct and in derived structs

private Only within the struct

Unlike C#, access specifiers may also be applied when deriving from
structs:

struct PublicPlayer : public Player

{

};

struct ProtectedPlayer : protected Player

{

};

struct PrivatePlayer : private Player

{

};

// Default inheritance access specifier is public

struct DefaultPlayer : Player

{

};

The inheritance access specifier maps the member access levels in
the base struct to access levels in the derived struct:

Inherit
public

Inherit
protected

Inherit
private

Base public public protected private

Base private private private private

Base
protected

protected protected private

This means that ProtectedPlayer and PrivatePlayer have hidden
the public members of Player from outside code:

PublicPlayer pub{};

pub.Heal(10); // OK: Heal is public

ProtectedPlayer prot{};

prot.Heal(10); // Compiler error: Heal is protected

PrivatePlayer priv{};

priv.Heal(10); // Compiler error: Heal is private

DefaultPlayer def{};

def.Heal(10); // OK: Heal is public

When a virtual member function is overridden, it may have a different
access level than the member function it overrides. In this case, the
access level is always determined at compile time using the type the
member function is being called on. This may be different than the
runtime type of the object. That means access specifiers don't
support runtime polymorphism.

struct Base

{

 virtual void Foo()

 {

 DebugLog("Base Foo");

 }

private:

 virtual void Goo()

 {

 DebugLog("Base Goo");

 }

};

struct Derived : Base

{

private:

 virtual void Foo() override

 {

 DebugLog("Derived Foo");

 }

public:

 virtual void Goo() override

 {

 DebugLog("Derived Goo");

 }

};

// These calls use the access specifiers in Base

Base b;

b.Foo(); // "Base Foo"

//b.Goo(); // Compiler error: Goo is private

// These calls use the access specifiers in Derived

Derived d;

//d.Foo(); // Compiler error: Foo is private

d.Goo(); // "Derived Goo"

// These calls use the access specifiers in Base, even

though the runtime object

// is a Derived

Base& dRef = d;

dRef.Foo(); // "Derived Foo"

//dRef.Goo(); // Compiler error: Goo is private in Base

When using virtual inheritance, the most accessible path through the
derived classes is used to determine access level:

struct Top

{

 int32_t X = 123;

};

// X is private due to private inheritance

struct Left : private virtual Top

{

};

// X is public due to public inheritance

struct Right : public virtual Top

{

};

// X is public due to public inheritance via Right

// This takes precedence over private inheritance via

Left

struct Bottom : virtual Left, virtual Right

{

};

Top top{};

DebugLog(top.X); // 123

Left left{};

//DebugLog(left.X); // Compiler error: X is private

Right right{};

DebugLog(right.X); // 123

// Accessing X goes through Right

Bottom bottom{};

DebugLog(bottom.X); // 123

It's important to note that access levels may change the layout of the
struct's non-static data members in memory. While the data
members are guaranteed to be laid out sequentially, perhaps with
padding between them, this is only true of data members of the
same access level. For example, the compiler may choose to lay out
all the public data members then all the private data members or to
mix all the data members regardless of their access level:

struct Mixed

{

 private: int32_t A = 1;

 public: int32_t B = 2;

 private: int32_t C = 3;

 public: int32_t D = 4;

};

// Some possible layouts of Mixed:

// Ignore access level: A, B, C, D

// Private then public: A, C, B, D

// Public then private: B, D, A, C

Structs, including all of the examples above, use public as their
default access level. That applies to their members and their
inheritance. To make private the default, replace the keyword
struct with class:

class Player

{

 int32_t Health = 0;

};

Player player{};

DebugLog(player.Health); // Compiler error: Health is

private

That's right: classes are just structs with a different default access
level!

They're so compatible that we can even declare them as struct and
define them as class or visa versa:

struct Player;

class Player

{

 int32_t Health = 0;

};

class Weapon;

struct Weapon

{

 int32_t Damage = 0;

};

The choice of which to use is mostly up to convention. The struct
keyword is typically used when all or the majority of members will be
public. The class keyword is typically used when all or the majority
of members will be private.

As far as terminology, it's typical to say just "classes" or "structs"
rather than "classes and structs" since the two concepts are
essentially the same. For example, "structs can have constructors"
implies that classes can also have constructors. All of the previous
articles about structs in this book apply equally to classes.

Friendship

C++ provides a way for structs to explicitly grant complete access to
their members regardless of what the access level would otherwise
be. To do so, the struct adds a friend declaration to its definition
stating the name of the function or struct that it wants to grant access
to:

class Player

{

 // Private due to the default for classes

 int64_t Id = 123;

 int32_t Points = 0;

 // Make the PrintId function a friend

 friend void PrintId(const Player& player);

 // Make the Stats class a friend

 friend class Stats;

};

void PrintId(const Player& player)

{

 // Can access Id and Points members because PrintId

is a friend of Player

 DebugLog(player.Id, "has", player.Points, "points");

}

// It's OK that Stats is actually a struct, not a class

struct Stats

{

 static int32_t GetTotalPoints(Player* players,

int32_t numPlayers)

 {

 int32_t totalPoints = 0;

 for (int32_t i = 0; i < numPlayers; ++i)

 {

 // Can access Points because Stats is a

friend of Player

 totalPoints += players[i].Points;

 }

 return totalPoints;

 }

};

Player p;

PrintId(p); // 123 has 0 points

int32_t totalPoints = Stats::GetTotalPoints(&p, 1);

DebugLog(totalPoints); // 0

It's so common for structs to be friends with inline functions in
particular that C++ provides a shortcut to defining the inline
function and declaring it as a friend:

class Player

{

 int64_t Id = 123;

 int32_t Points = 0;

 // Make the PrintId inline function and make it a

friend

 friend void PrintId(const Player& player)

 {

 // Can access Id and Points members

 // because PrintId is a friend of Player

 DebugLog(player.Id, "has", player.Points,

"points");

 }

};

Even though the definition of PrintId appears within the definition of
Player, like a member function would, it is still a normal function and
not a member function. We can see this when calling it:

// Call like a normal function

Player p;

PrintId(p); // 123 has 0 points

// Call like a member function

p.PrintId(); // Compiler error: Player doesn't have a

PrintId member

Also, note that friendship is not inherited and a friend-of-a-friend is
not a friend:

class Player

{

 int32_t Points = 0;

 friend class Stats;

};

struct Stats

{

 friend class PointStats;

};

struct PointStats : Stats

{

 static int32_t GetTotalPoints(Player* players,

int32_t numPlayers)

 {

 int32_t totalPoints = 0;

 for (int32_t i = 0; i < numPlayers; ++i)

 {

 // Compiler error: can't access Points

because PointStats is NOT

 // a friend of Player even though it inherits

from Stats and is

 // a friend of Stats. Only Stats is a friend.

 totalPoints += players[i].Points;

 }

 return totalPoints;

 }

};

Const and Mutable

As we've seen throughout the book and touched on lightly, types in
C++ may be qualified with the const keyword. We can put this
qualifier on any use of a type: local variables, global variables, data
members, function parameters, return values, pointers, and
references.

At its most basic, const means we can't re-assign:

// x is a const int

const int32_t x = 123;

// Compiler error: can't assign to a const variable

x = 456;

The const keyword can be placed on the left or right of the type. This
is known as "west const" and "east const" and both are in common
usage. The placement makes no difference in this case as both
result in a const type.

const int32_t x = 123; // "West const" version of a

constant int32_t

int32_t const y = 456; // "East const" version of a

constant int32_t

DebugLog(x, y); // 123, 456

For even slightly more complicated types, the ordering matters more.
Consider a pointer type:

const char* str = "hello";

There are two potential meanings of const char* str:

1. A non-const pointer to a const char
2. A const pointer to a non-const char

That is to say, one of these two will be a compiler error:

// Compiler error if (1) because this would change the

char

*str = 'H';

// Compiler error if (2) because this would change the

pointer

str = "goodbye";

The rule is that const modifies what's immediately to its left. If there's
nothing to its left, it modifies what's immediately to its right.

Because there's nothing left of const in const char* str, the const
modifies the char immediately to its right. That means the char is
const and the pointer is non-const:

*str = 'H'; // Compiler error: character is const

str = "goodbye"; // OK: pointer now points to "goodbye"

Using "east const" eliminates the "nothing to its left" case so it's
easier to determine what is const:

// 'char' is left of 'const', so 'char' is const

char const * str = "hello";

str = "goodbye"; // OK: pointer is non-const

*str = 'H'; // Compiler error: char is const

// '*' is left of 'const', so pointer is const

char * const str = "hello";

str = "goodbye"; // Compiler error: pointer is const

*str = 'H'; // OK: char is non-const

// Both 'char' and '*' are left of a 'const', so both are

const

char const * const str = "hello";

str = "goodbye"; // Compiler error: pointer is const

*str = 'H';// Compiler error: char is const

Besides assignment, the const keyword also means we can't modify
the data members of a const struct:

struct Player

{

 const int64_t Id;

 Player(int64_t id)

 : Id(id)

 {

 }

};

Player player{123};

// Compiler error: can't modify data members of a const

struct

//player.Id = 1000;

A reference to a const T has the type const T& and a pointer to a
const T has the type const T*. These can't be assigned to non-
const references with type T& and non-const pointers with type T*
since that would remove the "const-ness" of it:

const int32_t x = 123;

// Compiler error: const int32_t& incompatible with

int32_t&

int32_t& xRef = x;

// Compiler error: const int32_t* incompatible with

int32_t*

int32_t* xPtr = &x;

Member functions may also be const by putting the keyword after
the function signature, similar to where we'd put override:

class Player

{

 int32_t Health = 100;

public:

 // GetHealth is a const member function

 int32_t GetHealth() const

 {

 return Health;

 }

};

A const member function of a struct T is implicitly passed a const T*
this pointer instead of a (non-const) T* this pointer. This means all
the same restrictions apply and it is not allowed to modify the data
members of this. This is similar to readonly instance members in
C# 8.0.

We're also prohibited from calling non-const member functions on a
const struct, either from inside or outside the struct:

class Player

{

 int32_t Health = 100;

public:

 int32_t GetHealth() const

 {

 // Compiler error: can't call non-const member

function from const

 // member function because 'this'

is a 'const Player*'

 TakeDamage(1);

 return Health;

 }

 void TakeDamage(int32_t amount)

 {

 Health -= amount;

 }

};

Player player{};

const Player& playerRef = player;

// Compiler error: can't call non-const TakeDamage on

const reference

playerRef.TakeDamage();

// OK: GetHealth is const

DebugLog(playerRef.GetHealth()); // 100

To opt-out of this restriction and allow a particular data member to be
treated as non-const by a const member function, we use the
mutable keyword:

class File

{

 FILE* Handle;

 // Can be modified by const member functions

 mutable long Size;

public:

 File(const char* path)

 {

 Handle = fopen(path, "r");

 Size = -1;

 }

 ~File()

 {

 fclose(Handle);

 }

 // A const member function

 long GetSize() const

 {

 if (Size < 0)

 {

 long oldPos = ftell(Handle);

 fseek(Handle, 0, SEEK_END);

 Size = ftell(Handle); // OK: Size is mutable

 fseek(Handle, oldPos, SEEK_SET);

 }

 return Size;

 }

};

The mutable keyword is commonly used with cached values like the
above caching of the file's size. For example, it means that the
relatively-expensive file I/O operations only need to be performed
one time regardless of how many times GetSize is called:

const File f{"/path/to/file"};

for (int32_t i = 0; i < 1000; ++i)

{

 // Can call GetSize on const File because GetSize is

const

 // GetSize can update Size because Size is mutable

 // Only the first call does any file I/O: saves 999

file I/O operations

 DebugLog(f.GetSize());

}

The following table contrasts C++'s const keyword with C#'s const
and readonly keywords:

Factor C++ const C# const C# readonly

Types Any
Numbers,
strings,
booleans

Any

Factor C++ const C# const C# readonly

Applicability Everywhere Fields, local
variables Fields, references

Can assign to
field

Only
mutable

N/A No

Can set field
of field

Only
mutable

N/A Structs no, Classes
yes

Can set field
of reference

Only
mutable

N/A
Yes, but doesn't
change referenced
structs

Can call
function of
field

Only const
function N/A

Yes, but doesn't
change field of
structs

Can call
function of
reference

Only const
function N/A

Yes, but doesn't
change referenced
structs

Generally, C++'s 'const' provides more consistent and thorough
immutability than C#'s readonly, which is its closest equivalent.

C# Equivalency

C# has three more access levels than C++:

internal

protected internal

private protected

Access
Specifier Member Accessibile From

internal Within same assembly

protected
internal Within same assembly or in derived classes

private
protected

Within same assembly or in derived classes
within same assembly

C++ has no concept of "assemblies" like .NET DLLs, so none of
these apply. They can, however, be simulated in C++.

One solution employs a combination of friend classes and
withholding some of the library's header files to simulate internal:

// Player.h: distributed with library (e.g. in 'public'

directory)

class Player

{

 // "Internal" access is granted via a particular

struct

 friend struct PlayerInternal;

 // "Internal" data members are private instead

 int64_t Id;

public:

 // Public library API

 int64_t GetId() const

 {

 return Id;

 }

};

// PlayerInternal.h: NOT distributed with library (e.g.

in 'internal' directory)

#include "Player.h"

struct PlayerInternal

{

 // Functions of the friend struct provide access to

"internal" data members

 static int64_t& GetId(Player& player)

 {

 return player.Id;

 }

};

// Library.cpp: code written inside the library

#include "Player.h"

#include "PlayerInternal.h"

Player player{};

PlayerInternal::GetId(player) = 123; // OK

DebugLog(player.GetId()); // OK

// User.cpp: code written by the user of the library

#include "Player.h"

Player player{};

PlayerInternal::GetId(player) = 123; // Compiler error:

undefined PlayerInternal

DebugLog(player.GetId()); // OK

Variants of this approach can be created to simulate protected
internal and private protected.

Conclusion

Once again, the two languages have quite a lot of overlap but also
many differences. They both feature public, protected, and private
access specifiers with roughly the same meaning. C# also has
internal, protected internal, and private protected, which C++
needs to simulate. C++ has inheritance access specifiers, friend
functions, and friend classes while C# doesn't.

C++ const serves a similar role to C# readonly and const, but
applies much more broadly than either. Allowing it on function
parameters and return values as well as arbitrary variables, pointers,
and references is a feature that has major impact on how C++ code
is designed. A lot of C++ codebases make as many variables,
references, and functions as possible const to enforce immutability
with compiler errors. The mutable keyword offers flexibility, such as
when implementing caches.

The last gigantic difference between the languages is that structs
and classes are the same in C++. The only difference is the keyword
used and the default access level. In C#, structs and classes are
extremely different. For example, C# structs don't support
inheritance or default constructors and there are are no readonly
class types or unmanaged classes. C++ structs and classes provide
almost the combined feature set of C# structs, classes, and
interfaces as well as being used to build other language features
such as delegates.

16. Struct and Class Wrapup

User-Defined Literals

C++ supports creating our own literals, with some limitations. These
are used to create instances of structs or other types in a similar
manner to user-defined conversion operators. They’re just
converting from literals rather than existing objects.

Here are the kinds of literals we can create:

Name Example

Decimal literal 123_suffix

Octal literal 0123_suffix

Hexadecimal literal 0x123_suffix

Binary literal 0b123_suffix

Real literal 0.123_suffix

Character literal 'c'_suffix

String literal "c"_suffix

The suffix can be any valid identifier. To implement the literal, we
write an operator "" _suffix function that's not part of the struct:

Vector2 operator "" _v2(long double val)

{

 Vector2 vec;

 vec.X = val;

 vec.Y = val;

 return vec;

}

Then we call it like this:

Vector2 v1 = 2.0_v2;

DebugLog(v1.X, v1.Y); // 2, 2

The C++ Standard Library reserves all suffixes that don't start with
an _ for its own use:

string greeting = "hello"s;

hours halfHour = 0.5h;

Like with other forms of operator overloading, including user-defined
conversion operators, it's important to strongly consider how
understandable the resulting code will be given its terseness.
Regular constructors and member functions may be more easily
understood due to explicitly stating the type.

Still, there are situations where the brevity and expressiveness may
come in handy. This is especially the case for codebases that make
heavy use of auto:

// User-defined literals require _less_ typing with auto

auto a = Vector2{2.0f};

auto b = 2.0f_v2;

// User-defined literals require _more_ typing without

auto

Vector2 a{2.0f};

Vector2 b = 2.0f_v2;

Local Classes

A local class (or struct) is one that is defined within the body of a
function:

void Foo()

{

 struct Local

 {

 int32_t Val;

 Local(int32_t val)

 : Val(val)

 {

 }

 };

 Local ten{10};

 DebugLog(ten.Val); // 10

}

Local classes are regular classes in most ways, but have a few
limitations. First, their member functions have to be defined within
the class definition: we can't split the declaration and the definition.

void Foo()

{

 struct Local

 {

 int32_t Val;

 Local(int32_t val);

 };

 // Compiler error

 // Member function definition must be in the class

definition

 Local::Local(int32_t val)

 : Val(val)

 {

 }

}

Second, they can't have static data members but they can have
static member functions.

void Foo()

{

 struct Local

 {

 int32_t Val;

 // Compiler error

 // Local classes can't have static data members

 static int32_t Max = 100;

 // OK: local classes can have static member

functions

 static int32_t GetMax()

 {

 return 100;

 }

 };

 DebugLog(Local::GetMax()); // 100

}

Third, and finally, they can have friends but they can't declare inline
friend functions:

class Classy

{

};

void Foo()

{

 struct Local

 {

 // Compiler error

 // Local classes can't define inline friend

functions

 friend void InlineFriend()

 {

 }

 // OK: local classes can have normal friends

 friend class Classy;

 };

}

Like local functions in C#, local classes in C++ are typically used to
reduce duplication of code inside the function but are placed inside
the function because they wouldn't be useful to code outside the
function. It's even common to see local classes without a name
when only one instance of them is needed. For example, this local
class de-duplicates code that's run on players, enemies, and NPCs
without requiring polymorphism:

// Three unrelated types: no common base class

struct Player

{

 int32_t Health;

};

struct Enemy

{

 int32_t Health;

};

struct Npc

{

 int32_t Health;

};

int32_t HealToFullIfNotDead(

 Player* players, int32_t numPlayers,

 Enemy* enemies, int32_t numEnemies,

 Npc* npcs, int32_t numNpcs)

{

 // Anonymous local class

 // Avoids needing to pick a good name

 struct

 {

 // More than just a function wrapped in a class

 // Also has its own state to keep track of

healing

 int32_t NumHealed = 0;

 // Overloaded function call operator

 // Avoids needing to pick a good name

 int32_t operator()(int32_t health)

 {

 // Dead or already at full. No heal.

 if (health <= 0 || health >= 100)

 {

 return health;

 }

 // Damaged. Heal.

 NumHealed++;

 return 100;

 }

 } healer;

 // The body of each loop reuses the heal code

 for (int32_t i = 0; i < numPlayers; ++i)

 {

 // Call the overloaded function call operator

 players[i].Health = healer(players[i].Health);

 }

 for (int32_t i = 0; i < numEnemies; ++i)

 {

 enemies[i].Health = healer(enemies[i].Health);

 }

 for (int32_t i = 0; i < numNpcs; ++i)

 {

 npcs[i].Health = healer(npcs[i].Health);

 }

 return healer.NumHealed;

}

// One dead, two damaged, one full health for each

const int32_t num = 4;

Player players[num]{{0}, {50}, {75}, {100}};

Enemy enemies[num]{{0}, {50}, {75}, {100}};

Npc npcs[num]{{0}, {50}, {75}, {100}};

int32_t numHealed = HealToFullIfNotDead(

 players, num,

 enemies, num,

 npcs, num);

DebugLog(numHealed); // 6

DebugLog(

 players[0].Health, players[1].Health,

 players[2].Health, players[3].Health); // 0, 100,

100, 100

DebugLog(

 enemies[0].Health, enemies[1].Health,

 enemies[2].Health, enemies[3].Health); // 0, 100,

100, 100

DebugLog(

 npcs[0].Health, npcs[1].Health,

 npcs[2].Health, npcs[3].Health); // 0, 100, 100, 100

Copy and Move Assignment Operators

Along with destructors and some constructors, the compiler will also
generate copy and move assignment operators for us.

struct Vector2

{

 float X;

 float Y;

 // Compiler generates a copy assignment operator like

this:

 // Vector2& operator=(const Vector2& other)

 // {

 // X = other.X;

 // Y = other.Y;

 // return *this;

 // }

 // Compiler generates a move assignment operator like

this:

 // Vector2& operator=(const Vector2&& other)

 // {

 // X = other.X;

 // Y = other.Y;

 // return *this;

 // }

};

void Foo()

{

 Vector2 a{2, 4};

 Vector2 b{0, 0};

 b = a; // Call the compiler-generated copy assignment

operator

 DebugLog(b.X, b.Y); // 2, 4

}

It'll do this as long as we don't define the assignment operator
ourselves, each non-static data member and base class has an
assignment operator, and none of the non-static data members are
const or references.

Like constructors and destructors, we can use = default and =
delete to override the default behavior and either force the compiler
to generate one or force it to not generate one.

struct Vector2

{

 float X;

 float Y;

 Vector2& operator=(const Vector2& other) = delete;

};

void Foo()

{

 Vector2 a{2, 4};

 Vector2 b{0, 0};

 b = a; // Compiler error: copy assignment operator is

deleted

 DebugLog(b.X, b.Y); // 2, 4

}

Unions

We've seen how the class keyword can be used instead of struct to
change the default access level from public to private. Similarly,
C++ provides the union keyword to change the data layout of the
struct. Instead of making the struct big enough to fit all of the non-
static data members, a union is just big enough to fit the largest non-
static data member.

union FloatBytes

{

 float Val;

 uint8_t Bytes[4];

};

void Foo()

{

 FloatBytes fb;

 fb.Val = 3.14f;

 DebugLog(sizeof(fb)); // 4 (not 8)

 // 195, 245, 72, 64

 DebugLog(fb.Bytes[0], fb.Bytes[1], fb.Bytes[2],

fb.Bytes[3]);

 fb.Bytes[0] = 0;

 fb.Bytes[1] = 0;

 fb.Bytes[2] = 0;

 fb.Bytes[3] = 0;

 DebugLog(fb.Val); // 0

}

Because the non-static data members of a union occupy the same
memory space, writing to one writes to the other. In the above
example, we can use this to get the bytes that make up a float or to
manipulate the float using integer math on the byte array that it
shares memory with.

Note that it is technically undefined behavior to read any non-static
data member except the most recently written one. However, nearly
all compilers support this as it is a common usage for unions so it is
very likely to be safe.

Like local classes, there are some restrictions put on unions. First,
unions can't participate in inheritance. That means they can't have
any base classes, be a base class themselves, or have any virtual
member functions.

struct IGetHashCode

{

 virtual int32_t GetHashCode() = 0;

};

// Compiler error: unions can't derive

union Id : IGetHashCode

{

 int32_t Val;

 uint8_t Bytes[4];

 // Compiler error: unions can't have virtual member

functions

 virtual int32_t GetHashCode() override

 {

 return Val;

 }

};

// Compiler error: can't derive from a union

struct Vec2Bytes : Id

{

};

Second, unions can't have non-static data members that are
references:

union IntRefs

{

 // Compiler error: unions can't have lvalue

references

 int32_t& Lvalue;

 // Compiler error: unions can't have rvalue

references

 int32_t&& Rvalue;

};

Third, if any non-static data member of the union has a "non-trivial"
copy or move constructor, copy or move assignment operator, or

destructor, then the union's version of that function is deleted by
default and needs to be explicitly written.

A struct has a "non-trivial" constructor if it's explicitly written, or if any
of the non-static data members have default initializers, or if there
are any virtual member functions or base classes, or if any non-static
data member or base class has a non-trivial constructor.

A struct has a "non-trivial" destructor if it's explicitly written, virtual, or
any non-static data member or base class has a non-trivial
destructor.

A struct has a "non-trivial" assignment operator if it's explicitly
written, if there are any virtual member functions or base classes, or
any non-static data member or base class has a non-trivial
assignment operator.

That's a lot of rules, but it's rather uncommon for unions to include
types with these kinds of non-trivial functions. Typically they're used
for simple primitives, structs, and arrays, like in the above examples.
For more advanced usage, we need to keep the rules in mind:

// Note: "ctor" is a common abbreviation for

"constructor"

// Likewise, "dtor" is a common abbreviation for

"destructor"

struct NonTrivialCtor

{

 int32_t Val;

 NonTrivialCtor()

 {

 Val = 100;

 }

 // Non-trivial copy constructor because it's

explicitly written

 NonTrivialCtor(const NonTrivialCtor& other)

 {

 Val = other.Val;

 }

};

// Union with a non-static data member whose copy

constructor is non-trivial

// The union's copy constructor is deleted by default

union HasNonTrivialCtor

{

 NonTrivialCtor Ntc;

};

// Union with a non-static data member whose copy

constructor is non-trivial

// The union's copy constructor is deleted by default

union HasNonTrivialCtor2

{

 NonTrivialCtor Ntc;

 HasNonTrivialCtor2()

 : Ntc{}

 {

 }

 // Explicitly write a copy constructor

 HasNonTrivialCtor2(const HasNonTrivialCtor2& other)

 : Ntc{other.Ntc}

 {

 }

};

HasNonTrivialCtor a{};

DebugLog(a.Ntc.Val);

// Compiler error

// Union has a non-static data member with a non-trivial

copy constructor

// Its copy constructor must be written explicitly

HasNonTrivialCtor b{a};

DebugLog(b.Ntc.Val);

HasNonTrivialCtor2 c{};

// OK: copy constructor explicitly written

HasNonTrivialCtor2 d{c};

DebugLog(d.Ntc.Val); // 100

Unions can also be "anonymous." Like structs, they can have no
name. Unlike structs, they can also have no variable:

void Foo()

{

 union

 {

 int32_t Int;

 float Float;

 };

}

These are even more restricted than normal unions. They can't have
any member functions or static data members and all their data
members have to be public. Like unscoped enums, their members
are added to whatever scope the union is in: Foo in the above
example.

void Foo()

{

 union

 {

 int32_t Int;

 float Float;

 };

 // Int and Float are added to Foo, so they can be

used directly

 Float = 3.14f;

 DebugLog(Int); // 1078523331

}

This feature is commonly used to create what's called a "tagged
union" by wrapping the union and an enum in a struct:

struct IntOrFloat

{

 // The "tag" remembers the active member

 enum { Int, Float } Type;

 // Anonymous union

 union

 {

 int32_t IntVal;

 float FloatVal;

 };

};

IntOrFloat iof;

iof.FloatVal = 3.14f; // Set value

iof.Type = IntOrFloat::Float; // Set type

// Read value and type

DebugLog(iof.IntVal, iof.Type); // 1078523331, Float

This pattern is also called a "variant," typically when more
protections are added to ensure the type and value are linked:

struct TypeException

{

};

class IntOrFloat

{

public:

 enum struct Type { Int, Float };

 Type GetType() const

 {

 return Type;

 }

 void SetIntVal(int32_t val)

 {

 Type = Type::Int;

 IntVal = val;

 }

 int32_t GetIntVal() const

 {

 if (Type != Type::Int)

 {

 throw TypeException{};

 }

 return IntVal;

 }

 void SetFloatVal(float val)

 {

 Type = Type::Float;

 FloatVal = val;

 }

 float GetFloatVal() const

 {

 if (Type != Type::Float)

 {

 throw TypeException{};

 }

 return FloatVal;

 }

private:

 Type Type;

 union

 {

 int32_t IntVal;

 float FloatVal;

 };

};

IntOrFloat iof;

iof.SetFloatVal(3.14f); // Set value to 3.14f and type to

Float

DebugLog(iof.GetFloatVal()); // 3.14

DebugLog(iof.GetIntVal()); // Throws exception: type is

not Int

Another common use of unions is to provide an alternative access
mechanism without changing the type of the data. It's very common
to see vectors, matrices, and quaternions that use unions to provide
either named field access or array access to the components:

union Vector2

{

 struct

 {

 float X;

 float Y;

 };

 float Components[2];

};

Vector2 v;

// Named field access

v.X = 2;

v.Y = 4;

// Array access: same values due to union

DebugLog(v.Components[0], v.Components[1]); // 2, 4

// Array access

v.Components[0] = 20;

v.Components[1] = 40;

// Named field access: same values due to union

DebugLog(v.X, v.Y); // 20, 40

Pointers to Members

Finally, let's look at how we create pointers to members of structs. To
simply get a pointer to a specific struct instance's non-static data
member, we can use the normal pointer syntax:

struct Vector2

{

 float X;

 float Y;

};

Vector2 v{2, 4};

float* p = &v.X; // p points to the X data member of a

However, we can also get a pointer to a non-static data member of
any instance of the struct:

float Vector2::* p = &Vector2::X; // p points to the X

data member of a Vector2

To dereference such a pointer, we need an instance of the struct
whose data member it points at:

float Vector2::* p = &Vector2::X;

Vector2 v{2, 4};

// Dereference the pointer for a particular struct

DebugLog(v.*p); // 2

These pointers can't be converted to plain pointers or visa versa, but
polymorphism is allowed as long as the base class isn't virtual:

struct Vector2

{

 float X;

 float Y;

};

struct Vector3 : Vector2

{

 float Z;

};

float Vector2::* p = &Vector2::X;

Vector2 v{2, 4};

float* p2 = p; // Compiler error: not compatible

float f = 3.14f;

float Vector2::* pf = &f; // Compiler error: not

compatible

float Vector3::* p3 = p; // OK: Vector3 derives from

Vector2

DebugLog(v.*p3); // 2

The syntax gets a little complicated when making a pointer to a
member that is itself a pointer to a member. Thankfully, this is rarely
seen:

struct Float

{

 float Val;

};

struct PtrToFloat

{

 float Float::* Ptr;

};

// Pointer to Val in a Float pointed to by Ptr in a

PtrToFloat

float Float::* PtrToFloat::* p1 = &PtrToFloat::Ptr;

Float f{3.14f};

PtrToFloat ptf{&Float::Val};

float Float::* pf = ptf.*p1; // Dereference first level

of indirection

float floatVal = f.*pf; // Dereference second level of

indirection

DebugLog(floatVal); // 3.14

// Dereference both levels of indirection at once

DebugLog(f.*(ptf.*p1)); // 3.14

Pointers to member functions can also be taken. The syntax is like a
combination of data member pointers and normal function pointers:

struct Player

{

 int32_t Health;

};

struct PlayerOps

{

 Player& Target;

 PlayerOps(Player& target)

 : Target(target)

 {

 }

 void Damage(int32_t amount)

 {

 Target.Health -= amount;

 }

 void Heal(int32_t amount)

 {

 Target.Health += amount;

 }

};

// Pointer to a non-static member function of PlayerOps

that

// takes an int32_t and returns void

void (PlayerOps::* op)(int32_t) = &PlayerOps::Damage;

Player player{100};

PlayerOps ops(player);

// Call the Damage function via the pointer

(ops.*op)(20);

DebugLog(player.Health); // 80

// Re-assign to another compatible function

op = &PlayerOps::Heal;

// Call the Heal function via the pointer

(ops.*op)(10);

DebugLog(player.Health); // 90

Conclusion

This chapter we've seen a bunch of miscellaneous class functionality
that isn't available in C#. User-defined literals can make code both
more expressive and more terse at the same time. It's best used
sparingly for very stable, core types like the Standard Library's
string.

Local classes give a lot of the same benefits that local functions do
in C#, but go a step further and allow nearly full class functionality
including data members, constructors, destructors, and overloaded
operators.

Copy and move assignment operators allow us to easily copy and
move classes with the familiar x = y syntax rather than utility
functions typically named Clone or Copy. The compiler will even
generate them for us, saving a lot of boilerplate and potential for
errors if that boilerplate gets out of sync with changes to the class.

Unions allow for memory savings, advanced manipulation of the bits
and bytes behind types like float, and the convenience of
alternative access styles. They can be partially emulated in C#, but
native support in C++ is more convenient and offers more advanced
functionality.

Pointers to members allow us to limit them to pointing specifically to
members of classes and to not tie that access to any particular
instance of the class. With support for both data members and
member functions, we have a tool that enables runtime
determination of the data to use or function to call without needing a
heavyweight language feature like C#'s delegates. This can be used
for setting modes (e.g. Damage mode versus Heal mode), for GUI
callbacks (e.g. click handlers), or a variety of other situations.

https://jacksondunstan.com/articles/5303

17. Namespaces

Namespace Basics

Namespaces serve the same high-level purpose in C++ as they do
in C#. They allow us to reuse identifiers and disambiguate them by
namespace. The basic syntax even looks the same:

namespace Math

{

 struct Vector2

 {

 float X;

 float Y;

 };

}

Also like C#, we can reopen the namespace to add on to it by simply
reusing the name:

namespace Math

{

 struct Vector2

 {

 float X;

 float Y;

 };

}

namespace Math

{

 struct Vector3

 {

 float X;

 float Y;

 float Z;

 };

}

We can also nest namespaces:

namespace Math

{

 namespace LinearAlgebra

 {

 struct Vector2

 {

 float X;

 float Y;

 };

 }

}

Accessing members of the namespace is a bit different. As we’ve
seen with enums and structs, we continue to use the scope
resolution operator (A::B) instead of C#’s dot syntax (A.B).

Math::Vector2 vec{2, 4}; // Refer to Vector2 in the Math

namespace

DebugLog(vec.X, vec.Y); // 2, 4

To refer to the namespace implicitly created for the global scope, we
use ::B instead of global::B as in C#:

int32_t highScore = 0;

class Player

{

 int32_t numPoints;

 int32_t highScore;

 void ScorePoints(int32_t num)

 {

 numPoints += num;

 // highScore refers to the data member

 if (numPoints > highScore)

 {

 highScore = numPoints;

 }

 // ::highScore refers to the global variable

 if (numPoints > ::highScore)

 {

 ::highScore = numPoints;

 }

 }

};

As of C++17, we can also use the scope resolution operator to
create nested namespaces:

namespace Math::LinearAlgebra

{

 struct Vector2

 {

 float X;

 float Y;

 };

}

Unlike C#, we’re not limited to only putting types like structs and
enums in a namespace. We can put anything we want there:

namespace Math

{

 // Variable

 const float PI = 3.14f;

 // Function

 bool IsNearlyZero(float val, float threshold=0.0001f)

 {

 return abs(val) < threshold;

 }

}

We can also put declarations inside the namespace and definitions
outside:

namespace Math

{

 // Declarations

 struct Vector2;

 bool IsNearlyZero(float val, float

threshold=0.0001f);

}

// Definitions

struct Math::Vector2

{

 float X;

 float Y;

};

bool Math::IsNearlyZero(float val, float threshold)

{

 return abs(val) < threshold;

}

The definitions need to be in either an enclosing namespace or at
global scope:

namespace Math

{

 // Declarations

 struct Vector2;

 bool IsNearlyZero(float val, float

threshold=0.0001f);

}

// Definitions

namespace Other

{

 // Compiler error: Other isn't an enclosing namespace

or global scope

 struct Math::Vector2

 {

 float X;

 float Y;

 };

 // Compiler error: Other isn't an enclosing namespace

or global scope

 bool Math::IsNearlyZero(float val, float threshold)

 {

 return abs(val) < threshold;

 }

}

Note that a namespace with only functions is another way to mimic a
C# static class.

Using Directives

Explicitly writing out namespace names like Math:: gets tedious and
verbose. As in C#, C++ has using directives to alleviate this issue.
The syntax looks similar:

// Using directive

using namespace Math;

// No need for Math::

Vector2 vec{2, 4};

DebugLog(vec.X, vec.Y); // 2, 4

Unlike C# where using directives have to be at the top of a file, C++
allows them anywhere in the global scope, in a namespace, or even
in any block:

namespace MathUtils

{

 // Using directive inside a namespace

 using namespace Math;

 bool IsNearlyZero(Vector2 vec, float

threshold=0.0001f)

 {

 return abs(vec.X) < threshold && abs(vec.Y) <

threshold;

 }

}

void Foo()

{

 // Using directive inside a function

 using namespace Math;

 // No need for Math::

 Vector2 vec{2, 4};

 DebugLog(vec.X, vec.Y); // 2, 4

}

enum struct Op

{

 IS_NEARLY_ZERO

};

bool DoOp(Math::Vector2 vec, Op op)

{

 if (op == Op::IS_NEARLY_ZERO)

 {

 // Using directive inside a block

 using namespace MathUtils;

 return IsNearlyZero(vec);

 }

 return false;

}

Also unlike C#, using directives are transitive. In the above, the
MathUtils namespace has using namespace Math. That means any
using namespace MathUtils implicitly includes a using namespace
Math:

// Implicitly includes MathUtils' "using namespace Math"

using namespace MathUtils;

// No need for Math:: due to transitive using directive

Vector2 vec{2, 4};

// No need for MathUtils::

DebugLog(IsNearlyZero(vec)); // false

Even members added to the namespace after the using directive are
included transitively:

namespace Math

{

 struct Vector2

 {

 float X;

 float Y;

 };

}

namespace MathUtils

{

 using namespace Math;

 bool IsNearlyZero(Vector2 vec, float

threshold=0.0001f)

 {

 return abs(vec.X) < threshold && abs(vec.Y) <

threshold;

 }

}

namespace Math

{

 struct Vector3

 {

 float X;

 float Y;

 float Z;

 };

}

void Foo()

{

 // Implicitly includes MathUtils' "using namespace

Math"

 // Includes Vector3, even though it was after "using

namespace Math"

 using namespace MathUtils;

 Vector3 vec{2, 4, 6};

 DebugLog(vec.X, vec.Y, vec.Z); // 2, 4, 6

}

Note that it is generally considered a bad practice to place using
directives in the global scope of header files as it imposes the
entirety of the namespace as well as any transitively-used
namespaces on all files that #include it.

Inline Namespaces

C++ namespaces may be inline:

inline namespace Math

{

 struct Vector2

 {

 float X;

 float Y;

 };

}

This is similar to a non-inline namespace immediately followed by a
using directive:

namespace Math

{

 struct Vector2

 {

 float X;

 float Y;

 };

}

using namespace Math;

We can therefore use the members of the namespace without the
scope resolution operator or an explicit using directive:

Vector2 vec{2, 4};

DebugLog(vec.X, vec.Y); // 2, 4

As of C++20, we can add the keyword inline before each name
except the first when defining nested namespaces:

// Math is a non-inline namespace

// LinearAlgebra is an inline namespace nested in Math

namespace Math::inline LinearAlgebra

{

 struct Vector2

 {

 float X;

 float Y;

 };

}

// Math:: still required as Math is not an inline

namespace

Math::Vector2 vec{2, 4};

DebugLog(vec.X, vec.Y); // 2, 4

This adds convenience to a normal use case for inline
namespaces. It’s typical to want to group together functionality, but

also offer it piecemeal. For example, the C++ Standard Library offers
user-defined literals for the string and hour types like this:

namespace std::inline literals::inline string_literals

{

 std::string operator""s(const char* chars, size_t

len)

 {

 // ... implementation ...

 }

}

namespace std:inline literals::inline chrono_literals

{

 std::chrono::hours operator""h(long double val)

 {

 // ... implementation ...

 }

}

void UseAllLiterals()

{

 // Transitively use string_literals and

chrono_literals

 // No need to specify each one

 using namespace std::literals;

 std::string greeting = "hello"s;

 std::chrono::hours halfHour = 0.5h;

}

void UseJustStringLiterals()

{

 // Use just string_literals

 using namespace std::literals::string_literals;

 std::string greeting = "hello"s;

 std::chrono::hours halfHour = 0.5h; // Compiler error

}

void UseJustChronoLiterals()

{

 // Use just chrono_literals

 using namespace std::literals::chrono_literals;

 std::string greeting = "hello"_s; // Compiler error

 std::chrono::hours halfHour = 0.5h;

}

Unnamed Namespaces

Namespaces may have no name. Just like with inline namespaces,
these have an implicit using directive right after them:

namespace

{

 struct Vector2

 {

 float X;

 float Y;

 };

}

// Implicitly added by the compiler

// UNNAMED is just a placeholder for the name the

compiler gives the namespace

using namespace UNNAMED;

// Can use members of the unnamed namespace

Vector2 vec{2, 4};

DebugLog(vec.X, vec.Y); // 2, 4

Because these namespaces have no name, there’s no way to
explicitly refer to their members with the scope resolution operator
(A::B) or name them in a using directive.

Specially, all members of unnamed namespaces, including nested
namespaces, have internal linkage, just like static global variables.

// other.cpp

int32_t Global; // External linkage

namespace

{

 int32_t InNamespace; // Internal linkage

}

// test.cpp

extern int32_t Global; // OK: has external linkage

extern int32_t InNamespace; // Linker error: has internal

linkage

 // Also, no way to name the

namespace here

void Foo()

{

 Global = 123;

 InNamespace = 456;

}

Using Declarations

Besides using directives, C++ also has using declarations:

namespace Math

{

 struct Vector2

 {

 float X;

 float Y;

 };

 struct Vector3

 {

 float X;

 float Y;

 float Z;

 };

}

// Use just Vector2, not Vector3

using Math::Vector2;

Vector2 vec2{2, 4}; // OK

Vector3 vec3a{2, 4, 6}; // Compiler error

Math::Vector3 vec3b{2, 4, 6}; // OK

Like variable declarations, we can name multiple namespace
members in a single using declaration:

namespace Game

{

 class Player;

 class Enemy;

}

void Foo()

{

 // Use Vector2 and Player, not Vector3 or Enemy

 using Alias::Vector2, Game::Player;

 Vector2 vec2{2, 4}; // OK

 Vector3 vec3{2, 4}; // Compiler error

 Player* player; // OK

 Enemy* enemy; // Compiler error

}

Unlike using directives, using declarations actually add the specified
namespace members to the block they’re declared in. This means
some conflicts are possible:

namespace Stats

{

 int32_t score;

}

namespace Game

{

 struct Player

 {

 int32_t Score;

 };

}

bool HasHighScore(Game::Player* player)

{

 using Stats::score;

 int32_t score = player->Score; // Compiler error:

score already declared

 return score > score; // Ambiguous reference to score

}

There’s one case where it’s OK to have more than one identifier with
the same name: function overloads. With multiple using declarations
referring to functions with the same name, we can create an
overload set within the function:

namespace Game

{

 struct Player

 {

 int32_t Health;

 };

}

namespace Damage

{

 struct Weapon

 {

 int32_t Damage;

 };

 void Use(Weapon& weapon, Game::Player& player)

 {

 player.Health -= weapon.Damage;

 }

}

namespace Healing

{

 struct Potion

 {

 int32_t HealAmount;

 };

 void Use(Potion& potion, Game::Player& player)

 {

 player.Health += potion.HealAmount;

 }

}

void DamageThenHeal(

 Game::Player& player, Damage::Weapon& weapon,

Healing::Potion& potion)

{

 using Damage::Use; // Now have one Use function

 using Healing::Use; // Now have two Use functions: an

overload set

 Use(weapon, player); // Call the Use(Weapon&,

Player&) overload

 Use(potion, player); // Call the Use(Potion&,

Player&) overload

}

Game::Player player{100};

Damage::Weapon weapon{20};

Healing::Potion potion{10};

DamageThenHeal(player, weapon, potion);

DebugLog(player.Health); // 90

Namespace Aliases

The final namespace feature is a simple one: aliases. We can use
these to shorten long, usually nested namespace names:

namespace Math

{

 namespace LinearAlgebra

 {

 struct Vector2

 {

 float X;

 float Y;

 };

 }

}

// mla is an alias for Math::LinearAlgebra

namespace mla = Math::LinearAlgebra;

mla::Vector2 vec2{2, 4};

DebugLog(vec2.X, vec2.Y); // 2, 4

This is pretty close to using N1 = N2 in C#. The major difference is
that it can be placed in the global scope, in a namespace, or in any
other block. It doesn’t need to be placed at the top of the file and
only apply to that one file.

Conclusion

C++ namespaces are, in many ways, very similar to C#
namespaces. As is typical, they form a rough superset of the C#
functionality. Advanced features like inline namespaces, using
declarations, and unnamed namespaces are available to us. We
also have the ability to put variables and functions in them in addition
to type definitions. We can even put using declarations and
directives nearly anywhere, not just at the top of files.

As is typical with more power though, more complexity is involved.
We need to avoid overly-broad using directives, pay attention to
transitive using directives, and resolve identifier conflicts with using
declarations.

Namespaces are used in nearly every C++ codebase, as they are in
nearly every C# codebase. We now know the rules for how to use
them, so we’re one step closer to effectively writing C++!

18. Exceptions

Throwing Exceptions

The syntax for throwing an exception looks almost the same in C++
as it does in C#:

throw e;

The major difference between the two languages is that C# requires
exception objects to be class instances derived from
System.Exception. There is a std::exception class in the C++
Standard Library, but we’re free to ignore it and throw objects of any
type: class instances, enums, primitives, pointers, etc.

class IOException {};

enum class ErrorCode { FileNotFound };

void Foo()

{

 // Class instance

 throw IOException{};

 // Enum

 throw ErrorCode::FileNotFound;

 // Primitive

 throw 1;

}

Note that the class instance of IOException here isn’t a pointer or
reference to an instance of the class. That’s required by C# as all
class instance variables are managed references. Here we throw the
object itself, but we can also throw pointers if we want:

IOException ex;

void Foo()

{

 // Pointer to a class instance

 throw &ex;

}

It’s typical to see throw all by itself in a statement but, like in C# 7.0,
it’s actually an expression that can be part of more complex
statements. Here it is as commonly seen with the ternary/conditional
operator:

class InvalidId{};

const int32_t MAX_PLAYERS = 4;

int32_t highScores[MAX_PLAYERS]{};

int32_t GetHighScore(int32_t playerId)

{

 return playerId < 0 || playerId >= MAX_PLAYERS ?

 throw InvalidId{} :

 highScores[playerId];

}

Catching Exceptions

Exceptions are caught with try and catch blocks, just like in C#:

void Foo()

{

 const int32_t id = 4;

 try

 {

 GetHighScore(id);

 }

 catch (InvalidId)

 {

 DebugLog("Invalid ID", id);

 }

}

We didn’t give the caught exception object a name in this example
because the mere fact that it was thrown is sufficient for the code in
the catch block. That’s also allowed in C#, as is naming the caught
exception:

struct InvalidId

{

 int32_t Id;

};

const int32_t MAX_PLAYERS = 4;

int32_t highScores[MAX_PLAYERS]{};

int32_t GetHighScore(int32_t playerId)

{

 return playerId < 0 || playerId >= MAX_PLAYERS ?

 throw InvalidId{playerId} :

 highScores[playerId];

}

void Foo()

{

 try

 {

 GetHighScore(4);

 }

 catch (InvalidId ex)

 {

 DebugLog("Invalid ID", ex.Id);

 }

}

In this version, InvalidId has the ID that was invalid so we give the
catch block’s exception object a name in order to access it.

Catching multiple types of exception objects also looks the same as
C#:

struct InvalidId

{

 int32_t Id;

};

struct NoHighScore

{

 int32_t PlayerId;

};

const int32_t MAX_PLAYERS = 4;

int32_t highScores[MAX_PLAYERS]{-1, -1, -1, -1};

int32_t GetHighScore(int32_t playerId)

{

 if (playerId < 0 || playerId >= MAX_PLAYERS)

 {

 throw InvalidId{playerId};

 }

 const int32_t highScore = highScores[playerId];

 return highScore < 0 ? throw NoHighScore{playerId} :

highScore;

}

void Foo()

{

 try

 {

 GetHighScore(2);

 }

 catch (InvalidId ex)

 {

 DebugLog("Invalid ID", ex.Id);

 }

 catch (NoHighScore ex)

 {

 DebugLog("No high score for player with ID",

ex.PlayerId);

 }

}

The catch blocks are checked in the order they’re listed and the first
matching type’s catch block gets executed.

Catching all types of exceptions looks a bit different in C++. We use
catch (...) {} instead of just catch {}:

void Foo()

{

 try

 {

 GetHighScore(2);

 }

 catch (...)

 {

 DebugLog("Couldn't get high score");

 }

}

As in C#, we can re-throw caught exceptions, whether they have a
name or not, using throw;:

void Foo()

{

 try

 {

 GetHighScore(2);

 }

 catch (...)

 {

 throw;

 }

}

C# has an exception filters feature:

catch (Exception e) when (e.Message == "kaboom")

{

 Console.WriteLine("kaboom!");

}

catch (Exception e) when (e.Message == "boom")

{

 Console.WriteLine("boom!");

}

This isn’t available in C++, but we can approximate it with regular
code such as a switch. Just keep in mind that C# exception filters
are evaluated before stack unwinding and this approximation is
evaluated afterward:

enum class IOError { FileNotFound, PermissionDenied };

void Foo()

{

 try

 {

 DeleteFile("/path/to/file");

 }

 catch (IOError err)

 {

 switch (err)

 {

 case IOError::FileNotFound:

 DebugLog("file not found");

 break;

 case IOError::PermissionDenied:

 DebugLog("permission denied");

 break;

 default:

 throw;

 }

 }

}

Lastly, C++ has an alterate form of try–catch blocks that are placed
at the function level:

void Foo() try

{

 GetHighScore(2);

}

catch (...)

{

 DebugLog("Couldn't get high score");

}

These are similar to a try that encompasses the whole function. The
main reason to use one is to be able to catch exceptions in
constructor initializer lists. Since these don’t appear in the function
body, there’s no other way to write a try block that includes them.

At the time the function-level catch block is called, all constructed
data members have already been destroyed. At the end of the catch,
the exception is automatically re-thrown with an implicit throw;
similar to the implicit return; at the of a void function:

struct HighScore

{

 int32_t Value;

 HighScore(int32_t playerId) try

 : Value(GetHighScore(playerId))

 {

 }

 catch (...)

 {

 DebugLog("Couldn't get high score");

 }

};

void Foo()

{

 try

 {

 HighScore hs{2};

 }

 catch (NoHighScore ex)

 {

 DebugLog("No high score for player",

ex.PlayerId);

 }

}

// This prints:

// * Couldn't get high score

// * No high score for player 2

Parameters, but not local variables, can be used in a function-level
catch block and they may even return:

int32_t GetHighScoreOrDefault(int32_t playerId, int32_t

defaultVal) try

{

 return GetHighScore(playerId);

}

catch (...)

{

 DebugLog(

 "Couldn't get high score for", playerId,

 ". Returning default value", defaultVal);

 return defaultVal;

}

void Foo()

{

 DebugLog(GetHighScoreOrDefault(2, -1));

}

// This prints:

// * Couldn't get high score for 2. Returning default

value -1

// * -1

Exception Specifications

C++ functions are classified as either non-throwing or potentially-
throwing. By default, all functions are potentially-throwing except
destructors and compiler-generated functions that don’t call
potentially-throwing functions.

// Regular function is potentially-throwing

void Foo() {}

struct MyStruct

{

 // Compiler-generated constructor is non-throwing

 //MyStruct()

 //{

 //}

 // Destructor is non-throwing

 ~MyStruct()

 {

 }

};

This information is used by the compiler to produce more optimized
code and to enable compile-time checks in case we accidentally
throw in a non-throwing function.

We can override the default classification in two ways. First, by
adding noexcept after the function’s parameter list like where we put
override or const:

void Foo() noexcept // Force non-throwing

{

 throw 1; // Compiler warning: throwing in a non-

throwing function

}

We can make noexcept conditional by adding a compile-time
expression in parentheses after it:

void Foo() noexcept(FOO_THROWS == 1)

{

 throw 1;

}

Compiler options such as -DFOO_THROWS=1 can be used to set
FOO_THROWS to change the function’s throwing classification without
changing the code.

We can also add noexcept to function pointers in the same way:

void Foo() noexcept

{

 throw 1;

}

void Goo() noexcept(FOO_THROWS == 1)

{

 throw 1;

}

void (*pFoo)() noexcept = Foo;

void (*pGoo)() noexcept(FOO_THROWS == 1) = Goo;

The second way of changing the default was deprecated in C++11
and removed completely in C++17 and C++20. It used to specify the
types of exceptions that a function could throw or that a function
wouldn’t throw any exceptions at all:

// Force non-throwing

// Deprecated in C++11 and removed in C++20

void Foo() throw()

{

 throw 1; // Compiler warning: this function is non-

throwing

}

// Can throw an int or a float

// Deprecated in C++11 and removed in C++17

void Goo(int a) throw(int, float)

{

 if (a == 1)

 {

 throw 123; // Throw an int

 }

 else if (a == 2)

 {

 throw 3.14f; // Throw a float

 }

}

Stack Unwinding

Just like when we throw exceptions in C#, exceptions thrown in C++
unwind the call stack looking for a try block that can handle the
exception. This triggers finally blocks in C#, but C++ doesn’t have
finally blocks. Instead, destructors of local variables are called
without the need for any explicit syntax such as finally:

struct File

{

 FILE* handle;

 File(const char* path)

 {

 handle = fopen(path, "r");

 }

 ~File()

 {

 fclose(handle);

 }

 void Write(int32_t val)

 {

 fwrite(&val, sizeof(val), 1, handle);

 }

};

void Foo()

{

 File file{"/path/to/file"};

 int32_t highScore = GetHighScore(123);

 file.Write(highScore);

}

If GetHighScore throws an exception in this example, the destructor
of file will be called and the file handle will be closed and
relinquished to the OS. If GetHighScore doesn’t throw an exception,
the lifetime of file will come to an end at the end of the function and
its destructor will be called. In either case, a resource leak is
prevented and no try or finally block needs to be written.

As the call stack is unwound looking for suitable catch blocks, we
may reach the root function of the call stack and still not have caught
the exception. In this case, the C++ Standard Library function
std::terminate is called. This calls the std::terminate_handler
function pointer. It defaults to a function that calls std::abort, which
effectively crashes the program. We can set our own
std::terminate_handler function pointer, typically to perform some
kind of crash reporting before calling std::abort:

void SaveCrashReport()

{

 // ...

}

void OnTerminate()

{

 SaveCrashReport();

 std::abort();

}

std::set_terminate(OnTerminate);

// ... anywhere else in the program ...

throw 123; // calls OnTerminate if not caught

std::terminate is also called in many other circumstances. One of
these is if a destructor called during stack unwinding itself throws an
exception:

struct Boom

{

 ~Boom() noexcept(false) // Force potentially-throwing

 {

 DebugLog("boom!");

 // If called during stack unwinding, this calls

std::terminate

 // Otherwise, it just throws like normal

 throw 123;

 }

};

void Foo()

{

 try

 {

 Boom boom{};

 throw 456; // Calls boom's destructor

 }

 catch (...)

 {

 DebugLog("never printed");

 }

}

Another way std::terminate could be called is if a non-throwing
function throws:

struct Boom

{

 ~Boom() // Non-throwing

 {

 throw 123; // Compiler warning: throwing in non-

throwing function

 }

};

void Foo()

{

 try

 {

 Boom boom{};

 }

 catch (...)

 {

 DebugLog("never printed");

 }

}

Or if a static variable’s constructor throws an exception:

struct Boom

{

 Boom()

 {

 throw 123;

 }

};

static Boom boom{};

Note that throwing in a static local variables’ constructor doesn’t
call std::terminate. Instead, the constructor is just called again the
next time the function is called:

struct Boom

{

 Boom()

 {

 throw 123;

 }

};

void Goo()

{

 static Boom boom{}; // Static local variable who's

constructor throws

}

void Foo()

{

 for (int i = 0; i < 3; ++i)

 {

 try

 {

 Goo();

 }

 catch (...)

 {

 DebugLog("caught"); // Prints three times

 }

 }

}

Slicing

One common mistake is to catch class instances that are part of an
inheritance hierarchy. We typically want to catch the base class
(IOError) to implicitly catch all the derived classes (FileNotFound,
PermissionDenied). This will lead to “slicing” off the base class sub-
object of the derived class. Since the subobject is really designed to
be used as a part of the derived class object, this may cause errors.

To see this in action, consider the following case where virtual
functions aren’t respected:

struct Exception

{

 const char* Message;

 virtual void Print()

 {

 DebugLog(Message);

 }

};

struct IOException : Exception

{

 const char* Path;

 IOException(const char* path, const char* message)

 {

 Path = path;

 Message = message;

 }

 virtual void Print() override

 {

 DebugLog(Message, Path);

 }

};

FILE* OpenLogFile(const char* path)

{

 FILE* handle = fopen(path, "r");

 return handle == nullptr ? throw IOException{path,

"Can't open"} : handle;

}

void Foo()

{

 try

 {

 FILE* handle = OpenLogFile("/path/to/log/file");

 // ... use handle

 }

 // Catching the base class slices it off from the

whole IOException

 catch (Exception ex)

 {

 // Calls Exception's Print, not IOException's

Print

 ex.Print();

 }

}

To fix the issue, simply catch by reference:

catch (Exception& ex)

A const reference is usually even better since it’s rare to want to
modify the exception object:

catch (const Exception& ex)

Either way, the appropriate virtual function will now be called and
we’ll get the right error message:

Can't open /path/to/log/file

Conclusion

Exceptions in C++ are broadly similar to exceptions in C#. Both
languages can throw class instances and catch one, many, or
arbitrary types. C++ lacks catch filters, but emulates it with normal
code like switch statements. It lacks finally because destructors
are used instead without the need to remember to add try or
finally blocks.

C++ also gains the ability to throw objects, not just references.
Those objects don’t have to be class instances as primitives, enums,
and pointers are also allowed. We can also gain a compiler safety
net and better optimization by using noexcept specifications. When
exceptions go uncaught, we can hook into std::terminate_handler
to add crash reporting or take any other actions before the program
exits.

19. Dynamic Allocation

History and Strategy

Let’s start by looking at a bit of a history which is still very relevant to
C++ programming today. In C, not C++, memory is dynamically
allocated using a family of functions in the C Standard Library whose
names end in alloc:

// Dynamically allocate 4 bytes

void* memory = malloc(4);

// Check for allocation failure

// Not necessary for small (e.g. 4 byte) allocations

// Needed for large (e.g. array) allocations

if (memory != NULL)

{

 // Cast to treat it as a pointer to an int

 int* pInt = (int*)memory;

 // Read the memory

 // This is undefined behavior: the memory hasn't been

initialized!

 DebugLog(*pInt);

 // Release the memory

 free(memory);

 // Write the memory

 // This is undefined behavior: the memory has been

released!

 *pInt = 123;

 // Release the memory again

 // This is undefined behavior: the memory has already

been released!

 free(memory);

}

“Raw” use of malloc and free like this is still common in C++
codebases. It’s a pretty low-level way of working though, and
generally discouraged in most C++ codebases. That’s because it’s
quite easy to accidentally trigger undefined behavior. The three
mistakes in the above code are very common bugs.

Higher-level dynamic allocation approaches make these mistakes
either harder to make or impossible. For example, in C# there’s no
way to get memory that hasn’t been initialized since everything is set
to zero, no way to have a reference to released memory since it’s
only released after the last reference is relinquished, and no way to
double-release memory since that’s handled by the GC.

C++ doesn’t take such a high-level approach as C# since the above
C code is also legal C++. It does, however, provide many higher-
level facilities for the majority of cases where safety is preferable to
total control.

Allocation

The new operator in C++ is conceptually similar to using the new
operator with classes in C#. It dynamically allocates memory,
initializes it, and evaluates a pointer:

struct Vector2

{

 float X;

 float Y;

 Vector2()

 : X(0), Y(0)

 {

 }

 Vector2(float x, float y)

 : X(x), Y(y)

 {

 }

};

// 1) Allocate enough memory for a Vector2:

sizeof(Vector2)

// 2) Call the constructor

// * "this" is the allocated memory

// * Pass 2 and 4 as arguments

// 3) Evaluate to a Vector2*

Vector2* pVec = new Vector2{2, 4};

DebugLog(pVec->X, pVec->Y); // 2, 4

The new operator combines several of the manual steps from the C
code so we can’t forget to do them or accidentally do them wrong.
As a result, safety is increased in numerous ways:

The amount of memory allocated is computed by the compiler,
so it’s always correct
The allocated memory is always initialized (i.e. by the
constructor), so we can’t use it before it’s initialized
The initialization code is always passed the right pointer to the
allocated memory
The allocated memory is always cast to the correct type of
pointer
Allocation failures are always handled (more below)

C# allows us to use new with classes and structs. In C++, we can use
new with any type:

// Dynamically allocate a primitive

int* pInt = new int{123};

DebugLog(*pInt); // 123

// Dynamically allocate an enum

enum class Color { Red, Green, Blue };

Color* pColor = new Color{Color::Green};

DebugLog((int)*pColor); // Red

We can also allocate arrays of objects with new. Just like other
arrays, each element is initialized:

// Dynamically allocate an array of three Vector2

// The default constructor is called on each of them

Vector2* vectors = new Vector2[3]();

DebugLog(vectors[0].X, vectors[0].Y); // 0, 0

DebugLog(vectors[1].X, vectors[1].Y); // 0, 0

DebugLog(vectors[2].X, vectors[2].Y); // 0, 0

This is different from an array in C# in two ways. First, it’s not a
managed object as C++ doesn’t have a garbage collector. Second,
it’s an array of Vector2 objects, not references to Vector2 objects.
It’s more like an array of C# structs than an array of C# classes: the
objects are laid out sequentially in memory.

Initialization

Regardless of the type, new always takes the same steps: allocate,
initialize, then evaluate to a pointer. Initialization is controlled by what
we put after the name of the type: nothing, parentheses, or curly
braces. If we put nothing, the object or array of objects is default-
initialized:

// Calls default constructor for classes

Vector2* pVec1 = new Vector2;

DebugLog(pVec1->X, pVec1->Y); // 0, 0

// Does nothing for primitives

int* pInt1 = new int;

DebugLog(*pInt1); // Undefined behavior: int not

initialized

// Calls default constructor for classes

Vector2* vectors1 = new Vector2[1];

DebugLog(vectors1[0].X, vectors1[0].Y); // 0, 0

// Does nothing for primitives

int* ints1 = new int[1];

DebugLog(ints1[0]); // Undefined behavior: ints not

initialized

If we put parentheses, a single object is direct-initialized:

// Calls (float, float) constructor

Vector2* pVec2 = new Vector2(2, 4);

DebugLog(pVec2->X, pVec2->Y); // 2, 4

// Sets to 123

int* pInt2 = new int(123);

DebugLog(*pInt2); // 123

Parentheses with an array must be empty. This aggregate-initializes
the array:

// Calls default constructor for classes

Vector2* vectors2 = new Vector2[1]();

DebugLog(vectors2[0].X, vectors2[0].Y); // 0, 0

// Sets to zero

int* ints2 = new int[1]();

DebugLog(ints2[0]); // 0

Curly braces list-initialize single objects:

// Calls (float, float) constructor

Vector2* pVec3 = new Vector2{2, 4};

DebugLog(pVec3->X, pVec3->Y); // 2, 4

// Sets to 123

int* pInt3 = new int{123};

DebugLog(*pInt3); // 123

They aggregate-initialize arrays and can be non-empty, such as to
pass arguments to a constructor or set primitives to a value. This is
generally the recommended form for both arrays and single objects:

// Calls (float, float) constructor for each element

Vector2* vectors3 = new Vector2[1]{2, 4};

DebugLog(vectors3[0].X, vectors3[0].Y); // 2, 4

// Sets each element to 123

int* ints3 = new int[1]{123};

DebugLog(ints3[0]); // 123

When memory allocation fails, such as when there’s not enough ,
new will throw a std::bad_alloc exception:

try

{

 // Attempt a 1 TB allocation

 // Throws an exception if the allocation fails

 char* big = new char[1024*1024*1024*1024];

 // Never executed if the allocation fails

 big[0] = 123;

}

catch (std::bad_alloc)

{

 // This gets printed if the allocation fails

 DebugLog("Failed to allocate big array");

}

Some codebases, especially in games, prefer to avoid exceptions.
Compilers often provide an option to call std::abort to crash the
program instead even though this is technically a violation of the C++
standard:

// Attempt a 1 TB allocation

// Calls abort() if the allocation fails

char* big = new char[1024*1024*1024*1024];

// Never executed if the allocation fails

big[0] = 123;

Deallocation

All of the above examples create memory leaks. That’s because C++
has no garbage collector to automatically release memory that’s no
longer referenced. Instead, we must release the memory when we’re
done with it. We do that with the delete operator:

Vector2* pVec = new Vector2{2, 4};

DebugLog(pVec->X, pVec->Y); // 2, 4

// 1) Call the Vector2 destructor

// 2) Release the allocated memory pointed to by pVec

delete pVec;

DebugLog(pVec->X, pVec->Y); // Undefined behavior: the

memory has been released

delete pVec; // Undefined behavior: the memory has

already been released

The delete operator takes one more step toward safety by
combining two steps together: de-initialization of the memory’s
contents followed by deallocating it. It doesn’t, however, prevent the
two errors at the end of the example: “use after release” and
“double-release.”

One way to address these issues is to set all pointers to the memory
to null after releasing them:

delete pVec;

pVec = nullptr;

// Undefined behavior: derefrencing null

DebugLog(pVec->X, pVec->Y);

delete pVec; // OK

In the “use after release” case, our dereferencing of a null pointer is
still undefined behavior. If the compiler can determine this, it can
produce whatever machine code it wants. It may simply dereference
null and crash, or it may do something strange like remove the
DebugLog line completely.

Most of the time, such as when using the null pointer in some far-
flung part of the codebase, the compiler can’t determine that it’s null
and will assume a non-null pointer. In that case, dereferencing null
will crash the program. So this is only a moderate improvement as
we may only potentially get a crash instead of data corruption from
reading or writing the released memory.

In the “double-release” case, it’s OK to delete null so this simply isn’t
a problem anymore.

Because a Vector2* might be a pointer to a single Vector2 or an
array of Vector2 objects, a second form of delete exists to call the
destructors of all the elements in an array:

Vector2* pVectors1 = new Vector2[3]{Vector2{2, 4}};

// Correct:

// 1) Call the Vector2 destructor on all three vectors

// 2) Release the allocated memory pointed to by

pVectors1

delete [] pVectors1;

Vector2* pVectors2 = new Vector2[3]{Vector2{2, 4}};

// Bug:

// 1) Call the Vector2 destructor on THE FIRST vector

// 2) Release the allocated memory pointed to by

pVectors2

delete pVectors2;

Note that the correct destructor needs to be called, which can be
problematic in the case of inheritance:

struct HasId

{

 int32_t Id;

 // Non-virtual destructor

 ~HasId()

 {

 }

};

struct Combatant

{

 // Non-virtual destructor

 ~Combatant()

 {

 }

};

struct Enemy : HasId, Combatant

{

 // Non-virtual destructor

 ~Enemy()

 {

 }

};

// Allocate an Enemy

Enemy* pEnemy = new Enemy();

// Polymorphism is allowed because Enemy "is a" Combatant

due to inheritance

Combatant* pCombatant = pEnemy;

// Deallocate a Combatant

// 1) Call the Combatant, not Enemy, destructor

// 2) Release the allocated memory pointed to by

pCombatant

delete pCombatant;

This is undefined behavior since the sub-object pointed to by
pCombatant might not be the same as the pointer that was allocated.
To fix this, use a virtual destructor:

struct HasId

{

 int32_t Id;

 virtual ~HasId()

 {

 }

};

struct Combatant

{

 virtual ~Combatant()

 {

 }

};

struct Enemy : HasId, Combatant

{

 virtual ~Enemy()

 {

 }

};

Enemy* pEnemy = new Enemy();

Combatant* pCombatant = pEnemy;

// Deallocate a Combatant

// 1) Call the Enemy destructor

// 2) Release the allocated memory pointed to by pEnemy

delete pCombatant;

Overloading New and Delete

So far we’ve been using the default new and delete operators. These
are fine for most purposes, but sometimes we want to take more
control over memory allocation and deallocation. For example, we
might want to use an alternative allocator for improved performance
as Unity’s Allocator.Temp does in C#. To do this, we can overload
the new and delete operators.

There are several forms the overloaded operators can take, but they
should always be overloaded in pairs. Here’s the simplest form:

// We need the std::size_t type

#include <cstddef>

struct Vector2

{

 float X;

 float Y;

 void* operator new(std::size_t count)

 {

 return malloc(sizeof(Vector2));

 }

 void operator delete(void* ptr)

 {

 free(ptr);

 }

};

// Calls overloaded new operator in Vector2

Vector2* pVec = new Vector2{2, 4};

DebugLog(pVec->X, pVec->Y); // 2, 4

// Calls overloaded delete operator in Vector2

delete pVec;

The array versions are overloaded separately:

struct Vector2

{

 float X;

 float Y;

 void* operator new[](std::size_t count)

 {

 return malloc(sizeof(Vector2)*count);

 }

 void operator delete[](void* ptr)

 {

 free(ptr);

 }

};

Vector2* pVecs = new Vector2[1];

delete [] pVecs;

Overloaded operators, including new, can take any arguments. We
put them between the new keyword and the type to allocate:

struct Vector2

{

 float X;

 float Y;

 // Overload the new operator that takes (float,

float) arguments

 void* operator new(std::size_t count, float x, float

y)

 {

 // Note: for demonstration purposes only

 // Normal code would just use a constructor

 Vector2* pVec =

(Vector2*)malloc(sizeof(Vector2)*count);

 pVec->X = x;

 pVec->Y = y;

 return pVec;

 }

 // Overload the normal delete operator

 void operator delete(void* memory, std::size_t count)

 {

 free(memory);

 }

 // Overload a delete operator corresponding with the

new operator

 // that takes (float, float) arguments

 void operator delete(void* memory, std::size_t count,

float x, float y)

 {

 // Forward the call to the normal delete operator

 Vector2::operator delete(memory, count);

 }

};

// Call the overloaded (float, float) new operator

Vector2* pVec = new (2, 4) Vector2;

DebugLog(pVec->X, pVec->Y); // 2, 4

// Call the normal delete operator

delete pVec;

One convention that’s arisen is to take a void* as the second
argument to indicate “placement new.” In this case, no memory is
allocated and the object simply uses the memory pointed to by that
void*:

struct Vector2

{

 float X;

 float Y;

 // Overload the "placement new" operator

 // Mark "noexcept" because there's no way this can

throw

 void* operator new(std::size_t count, void* place)

noexcept

 {

 // Don't allocate. Just return the given memory

address.

 return place;

 }

};

// Allocate our own memory to hold the Vector2

// We can use global variables, the stack, or anything

else

char buf[sizeof(Vector2)];

// Call the "placement new" operator

// The Vector2 is put in buf

Vector2* pVec = new (buf) Vector2{2, 4};

DebugLog(pVec->X, pVec->Y); // 2, 4

// Note: no "delete" since we didn't actually allocate

memory

Like other overloaded operators, we can also overload outside the
class to handle more than that one type. For example, here’s a
“placement new” for all types:

struct Vector2

{

 float X;

 float Y;

};

void* operator new(std::size_t count, void* place)

noexcept

{

 return place;

}

char buf[sizeof(Vector2)];

Vector2* pVec = new (buf) Vector2{2, 4};

DebugLog(pVec->X, pVec->Y); // 2, 4

float* pFloat = new (buf) float{3.14f};

DebugLog(*pFloat); // 3.14

Owning Types

So far we’ve overcome a lot of possible mistakes that could have
been made with low-level dynamic allocation functions like malloc
and free. Even so, “naked” use of new and delete is often frowned
upon in “Modern C++” (i.e. C++11 and newer) codebases. This is
because we are still susceptible to common bugs:

Forgetting to call delete, resulting in a memory leak
Calling delete twice, which is undefined behavior and likely a
crash
Using allocated memory after calling delete, which is undefined
behavior and likely causes corruption

To alleviate these issues, new and delete operators are typically
wrapped in a class referred to as an “owning type.” This gives us
access to constructors and destructors to allocate and deallocate
memory much more safely. The C++ Standard Library has several
generic types for this purpose which we’ll cover later in the book. For
now, let’s build a simple “owning type” that owns an array of float:

class FloatArray

{

 int32_t length;

 float* floats;

public:

 FloatArray(int32_t length)

 : length{length}

 , floats{new float[length]{0}}

 {

 }

 float& operator[](int32_t index)

 {

 if (index < 0 || index >= length)

 {

 throw IndexOutOfBounds{};

 }

 return floats[index];

 }

 virtual ~FloatArray()

 {

 delete [] floats;

 floats = nullptr;

 }

 struct IndexOutOfBounds {};

};

try

{

 FloatArray floats{3};

 floats[0] = 3.14f;

 // Index out of bounds

 // Throws exception

 // FloatArray destructor called

 DebugLog(floats[-1]); // 3.14

}

catch (FloatArray::IndexOutOfBounds)

{

 DebugLog("whoops"); // Gets printed

}

Here we see that we’ve encapsulated the new or delete operators
into the FloatArray class. The bulk of the codebase is simply a user
of this class and it doesn’t ever need to write a new or delete
operator. Despite that, it’s solved all three of the above problems:

We can’t forget to call delete because the destructor does, even
if an exception is thrown
We can’t call delete twice because the destructor does this for
us
We can’t use the memory after calling delete because we
wouldn’t have the variable to call member functions on

By using a class, we can also prevent other common errors:

The constructor always initializes the elements of the array to
avoid undefined behavior when reading them before writing
them
The overloaded array subscript ([]) operator performs bounds
checks to avoid memory corruption

Still, this is a poor implementation of an “owning type” as it’s
vulnerable to a variety of other problems. For example, the compiler
generates a copy constructor which copies the floats pointer
leading to a double-release:

void Foo()

{

 FloatArray f1{3};

 FloatArray f2{f1}; // Copies floats and length

 // 1) Call f1's destructor which deletes the

allocated memory

 // 2) Call f2's destructor which deletes the

allocated memory again: crash

}

Instead of creating custom owning types like FloatArray, it’s much
more common to use a platform library class like std::vector in the
C++ Standard Library or TArray in Unreal. The same goes for other
owning types like std::unique_ptr and std::shared_ptr, the C++
Standard Library’s “smart pointers” to a single object.

Conclusion

C# provides very high-level memory management by requiring
garbage collection. To avoid it, we’re forced into “unsafe” code and
must give up many language features including classes, interfaces,
and delegates. Such is the case with Unity’s Burst compiler, which
impose the HPC# subset.

C++ provides a whole spectrum of options. We can take low-level
control with malloc and free, create our own allocation functions,
use raw new and delete, overload new and delete globally or on a
per-type basis, pass extra arguments to new and delete, use
“placement new” to allocate at a particular address, or even write
“owning types” to avoid almost all of the manual allocation and
deallocation code.

There’s a ton of power, and a fair bit of complexity, here, but at no
point must we give up any language features in order to move to
higher-level or lower-level memory management strategies. We’ll
see some of those (very commonly-used) higher-level techniques
later in the book when we cover the C++ Standard Library.

20. Implicit Type Conversion

When Implicit Type Conversion Happens

Both C# and C++ feature implicit type conversion, but there are
many language-specific differences. In C++, implicit conversion
occurs when using a wider variety of language features.

First up, and just like in C#, it happens when calling a function with a
type other than the type of the function’s parameter:

void Foo(float x)

{

}

Foo(1); // int -> float

Similarly, and also in C#, it happens when returning a value whose
type isn’t the function’s return type:

float Bar()

{

 return 1; // int -> float

}

All the boolean logic operators require bool operands, so any non-
bool needs conversion. This can be implicit in C++, but not C#:

bool b1 = !1; // int -> bool

bool b2 = false || 1; // int -> bool

bool b3 = true && 1; // int -> bool

The same goes for conditionals in C++, but not C#:

if (1) // int -> bool

{

}

bool b4 = 1 ? false : true; // int -> bool

And for C++ loops, not not C# loops:

while (1) // int -> bool

{

}

for (; 1;) // int -> bool

{

}

do

{

} while (1); // int -> bool

The switch statement requires an integral type, so there’s
conversion required when using anything else. Both languages
support this:

switch (false) // bool -> int

{

}

The C++ delete operator only deletes typed pointers. Here we have
a user-defined conversion operator that converts a struct to an int*:

struct ConvertsToIntPointer

{

 operator int*() { return nullptr; }

};

delete ConvertsToIntPointer{}; // ConvertsToIntPointer ->

int*

Finally, both of C++’s noexcept and explicit can be conditional and
require a bool:

void Baz() noexcept(1) // int -> bool

{

}

// C++20 and later

struct HasConditionalExplicit

{

 explicit(1) HasConditionalExplicit() {} // int ->

bool

};

Standard Conversions

We’ve already talked about user-defined conversions, but these
aren’t the only ways to implicitly convert between types. The
language itself has many “standard” conversions that don’t require
us to write any code.

Usually these change the type itself, but in a few cases they just
change its classification:

int x = 123;

const int y = x; // int -> const int

 // also, lvalue -> rvalue

It’s always OK to treat a non-const as a const since that just adds
restriction. We can’t go the other way as that would remove the
const restriction.

Similarly, we can go from non-throwing functions to possibly-
throwing but not the other way:

void DoStuff() noexcept

{

 throw 1;

}

void (*pFuncNoexcept)() noexcept = &DoStuff;

void (*pFunc)() = pFuncNoexcept; // non-throwing ->

possibly-throwing

void (*pFuncNoexcept2)() noexcept = pFunc; // Compiler

error

With those out of the way, all the rest of the standard conversions
will change the type. First up we have function-to-pointer
conversions. The previous example “took the address” of DoStuff to
get a pointer to it, as we’ve seen before, but the is optional because
there’s a standard conversion from functions to function pointers:

void DoStuff()

{

}

void (*pFunc)() = DoStuff; // function -> function

pointer

Note that this doesn’t work on non-static member functions as they
require a class instance in order to implicitly pass the this argument:

struct Vector2

{

 float X;

 float Y;

 float SqrMagnitude() const noexcept

 {

 return X*X + Y*Y;

 }

};

Vector2 vec{2, 4};

// All of these are compiler errors:

float (*sqrMagnitude1)() = Vector2::SqrMagnitude

float (*sqrMagnitude2)() = vec.SqrMagnitude;

float (*sqrMagnitude3)(Vector2*) = Vector2::SqrMagnitude

float (*sqrMagnitude4)(Vector2*) = vec.SqrMagnitude;

Next we have array-to-pointer conversions:

int arr[]{1, 2, 3};

int* pArray = arr; // int[3] -> int*

This is known as “array to pointer decay” and it’s allowed because
the two concepts are very similar. Semantically, it’s kind of like
pointers are the “base class” of arrays. They’re both essentially a
pointer and can be treated like an array (x[123]), but arrays are of a
known size (sizeof(arr) == sizeof(int)*3). So one way to think
about this is like an “upcast” from a derived class (array more
information) to a base class (pointer with less information).

When it comes to numbers, we have two broad categories:
promotion and conversion. Promotion won’t change the value of the
number, but conversion might. Promotion generally increases the
size of a number since larger sizes can represent all the values of
smaller sizes. The same happens in C# when we, for example, pass
a short to a function that takes an int.

This is commonly needed since all the arithmetic operators (e.g. x +
y) require an int or larger. So the smaller primitive types will be

promoted to an int for all these operators as well as for all the
reasons we saw above.

First, signed char is always promoted to int:

signed char c = 'A';

int i = c + 1; // c is promoted from 'signed char' to int

DebugLog(i); // 66 (ASCII for 'B')

The sizes of char, unsigned char, unsigned short, and int depend
on factors such as the compiler and CPU architecture. If int can
hold the full range of values for char, unsigned char, unsigned
short, and char8_t, which is usually the case, they’re promoted to
int. If it can’t, they’re promoted to unsigned int.

unsigned char c = 'A'; // or 'unsigned short' or

'char8_t'

auto i = c + 1; // c is promoted from 'unsigned char' to

int or 'unsigned int'

DebugLog(i); // 66 (ASCII for 'B')

The compiler also determines the size of wchar_t. It, as well as
char16_t and char32_t, will be promoted to the first type that’s big
enough to hold the full range of values:

1. int
2. unsigned int
3. long
4. unsigned long

5. long long
6. unsigned long long

wchar_t c = 'A';

auto i = c + 1; // c is promoted from 'wchar_t' to at

least an int

DebugLog(i); // 66 (ASCII for 'B')

Unscoped enumerations that don’t have a fixed underlying type are
also promoted into the same list of types:

enum Color // No underlying type

{

 Red,

 Green,

 Blue

};

Color c = Red;

auto i = c + 1; // c is promoted from 'Color' to at least

an int

DebugLog(i); // 1

If it does have a fixed underlying type, it’s promoted to that type and
then that type can be promoted:

enum Color : int // Has an underlying type

{

 Red,

 Green,

 Blue

};

Color c = Red;

long i = c + 1L; // c is promoted from 'Color' to int and

then to long

DebugLog(i); // 1

Bit fields will be promoted to the smallest size that can hold the full
value range of the bit field, but it’s a short list:

1. int
2. unsigned int

struct ByteBits

{

 bool Bit0 : 1;

 bool Bit1 : 1;

 bool Bit2 : 1;

 bool Bit3 : 1;

 bool Bit4 : 1;

 bool Bit5 : 1;

 bool Bit6 : 1;

 bool Bit7 : 1;

};

ByteBits bb{0};

int i = bb.Bit0 + 1; // bit field is promoted from 1 bit

to int

DebugLog(i); // 1

The bool type is promoted to int with false becoming 0 and true
becoming 1 (not just non-zero). This isn’t allowed in C#:

bool b = true;

int i = b + 1; // b is promoted from bool to int with

value 1

DebugLog(i); // 2

The float type is promoted to double, which works in both
languages:

float f = 3.14f;

double d = f + 1.0; // f is promoted from float to double

DebugLog(d); // 4.14

Everything else is a numeric conversion, not promotion. Unlike
promotion, the value may change during conversion.

First, there’s conversion to an unsigned integer type. The result is
smallest unsigned value modulus 2n where n is the number of bits in
the destination type. If the source type was signed, it’s sign-extended

or truncated. If it was unsigned, it’s zero-extended or truncated. This
isn’t allowed in C#:

int32_t si = 257;

uint8_t ui = si; // si is converted from int32_t to

uint8_t

 // ui = 257 % 2^8 = 257 % 256 = 1

DebugLog(ui); // 1

When converting to a signed integer type, the value won’t be
changed if it can be represented in the destination type. Otherwise,
the value was implementation-defined until C++20. Since C++20, the
value is required by the C++ Standard to be computed like the
conversion to unsigned: the source value modulus 2n where n is the
number of bits in the destination type. This also isn’t allowed in C#:

uint32_t ui1 = 123;

int8_t si1 = ui1; // ui1 is converted from uint32_t to

int8_t

 // The value doesn't change since it

can be held in int8_t

DebugLog(si1); // 1

uint32_t ui2 = 257;

int8_t si2 = ui2; // ui2 is converted from uint32_t to

int8_t

 // Implementation-defined value until

C++20

 // Since C++20:

 // si2 = 257 % 2^8 = 257 % 256 = 1

DebugLog(si2); // 1 in C++20, unknown in C++17 and before

We saw above that when bool must become an int, it’s promoted
from false to 0 and true to 1. For all other integer types, this is
technically a conversion but it generates the same result. Despite not
losing any precision like the above conversions, C# also forbids this:

bool b = true;

long i = b + 1; // b is converted from bool to long with

value 1

DebugLog(i); // 2

If a floating point type needs to become another floating point type,
it’s value is preserved exactly if that’s possible in the destination
type. If that’s not possible and the source value is between two
values in the destination type, one of them will be chosen. Usually
the nearest value is chosen. Otherwise, the conversion is undefined
behavior. This is also forbidden by C#:

double d = 3.14f;

float f = d; // d is converted from double to float

DebugLog(f); // 3.14

When converting a floating point type to an integer type, the
fractional part is discarded. If the value can’t fit, it’s undefined
behavior. Unlike above, there’s no modulus applied for unsigned
integer types. This too won’t work in C#:

float f1 = 3.14f;

int8_t i1 = f1; // f1 is converted from float to int8_t

 // Fractional part (0.14) is discarded

DebugLog(i1); // 3

float f2 = 257.0f;

uint8_t i2 = f2; // f2 is converted from float to int8_t

 // Value won't fit. Modulus not applied

 // This is undefined behavior!

DebugLog(i2); // Could be anything!

The other way around, integers converted to floating point, works
differently. They can be converted to any floating point type. The
integer’s value is preserved exactly if that’s possible in the floating
point type. Otherwise, if the integer’s value is between two values in
the floating point type then one of those two values will be chosen
and that’s usually the nearest value. Otherwise, the integer value
won’t fit and that’s undefined behavior. C# allows this, too. For bool,
we simply get 0 or 1 as with conversions to integer types, but not in
C# as it’s disallowed there.

int8_t i = 123;

float f1 = i; // i is converted from int8_t to float

DebugLog(f1); // 123

bool b = true;

float f2 = b; // b is converted from bool to float

DebugLog(f2); // 1

A “null pointer constant” in C++ is any integer literal with the value 0,
any constant with the value 0, or nullptr. These can all be
converted to any pointer type. Only null is allowed in C#.

int* p1 = 0; // Integer constant with value 0 is

converted to int*

DebugLog(p1); // 0

int* p2 = nullptr; // nullptr is converted to int*

DebugLog(p2); // 0

Similar to the “decaying” we saw with the array-to-pointer
conversion, the shedding of noexcept, and the adding of const, all
pointer types convert to void* since it’s a “pointer to anything.” This
is allowed in both languages:

int x = 123;

int* pi = &x;

void* pv = pi; // int* is converted to void*

DebugLog(pv == pi); // true

As we’ve seen before when discussing inheritance, derived class
pointers convert to base class pointers. The result points to the base
class subobject of the derived class. Similarly, C# allows this with
class references.

struct Vector2

{

 float X;

 float Y;

};

struct Vector3 : Vector2

{

 float Z;

};

Vector3 vec{};

vec.X = 1;

vec.Y = 2;

vec.Z = 3;

Vector3* pVec3 = &vec;

Vector2* pVec2 = pVec3; // Vector3* is converted to

Vector2*

DebugLog(pVec2->X, pVec2->Y); // 1, 2

Pointers to non-static members of base classes can likewise be
converted to pointers to non-static members of derived classes:

float Vector2::* pVec2X = &Vector2::X;

float Vector3::* pVec3X = pVec2X; // Pointer to base

member is converted

 // to pointer to

derived member

Vector3 vec{};

vec.X = 1;

vec.Y = 2;

vec.Z = 3;

Vector3* pVec3 = &vec;

Vector2* pVec2 = pVec3;

DebugLog((*pVec2).*pVec2X, (*pVec3).*pVec3X); // 1, 1

Note that this isn’t allowed for virtual inheritance:

struct Vector2

{

 float X;

 float Y;

};

struct Vector3 : virtual Vector2 // Virtual inheritance

{

 float Z;

};

float Vector2::* pVec2X = &Vector2::X;

float Vector3::* pVec3X = pVec2X; // Compiler error

Finally, all integer types, floating point types, unscoped
enumerations, pointers, and pointers to members can be converted
to bool. Zero and null become false and everything else becomes
true. C# doesn’t allow any of these.

int i = 123;

bool b1 = i; // int is converted to bool

DebugLog(b1); // true

float f = 3.14f;

bool b2 = f; // float is converted to bool

DebugLog(b2); // true

Color c = Red;

bool b3 = c; // Color is converted to bool

DebugLog(b3); // false

int* p = nullptr;

bool b4 = p; // int* is converted to bool

DebugLog(b4); // false

float Vector2::* pVec2X = &Vector2::X;

bool b5 = pVec2X; // Pointer to member is converted to

bool

DebugLog(b5); // true

Conversion Sequences

Now that we know about promotions and conversions, let’s see how
they’re sequenced in order to change types. First, C++ has a
“standard conversion sequence” that consists of the following steps
which mostly don’t apply to C#:

1) Zero or one conversions from an lvalue to an rvalue, array to
pointer decays, and function to pointer conversions
2) Zero or one promotions or conversions of a number
3) Zero or one function pointer conversions, including non-throwing
to possibly-throwing (only allowed in C++17 and later)
4) Zero or one non-const to const conversion

C++ also has an “implicit conversion sequence” with these steps:

1) Zero or one standard conversion sequences
2) Zero or one user-defined conversions
3) Zero or one standard conversion sequences

When we’re passing an argument to a class’ constructor or to a user-
defined conversion function, we can only use the standard
conversion sequence. That cuts out the possibility of calling a user-
defined conversion operator:

struct MyClass

{

 MyClass(const int32_t)

 {

 }

};

uint8_t i1{123};

MyClass mc{i1}; // 1) lvalue to rvalue

 // 2) Promotion from uin8_t to uint32_t

 // 3) N/A

 // 4) uint8_t to 'const uint8_t'

struct C

{

};

struct B

{

 operator C()

 {

 return C{};

 }

};

struct A

{

 operator B()

 {

 return B{};

 }

};

// Compiler error: user-defined conversion operators not

allowed here

C c = A{};

Otherwise, we’re allowed to use implicit conversion sequences.
Here’s a class that automatically closes files but converts to a FILE*
so it can be used with a wide variety of functions in the C++
Standard Library, such as fwrite that writes to a file:

class File

{

 FILE* handle;

public:

 File(const char* path, const char* mode)

 {

 handle = fopen(path, mode);

 }

 ~File()

 {

 fclose(handle);

 }

 operator FILE*()

 {

 return handle;

 }

};

void Foo()

{

 File writer{"/path/to/file", "w"};

 char msg[] = "hello";

 // fwrite looks like this:

 // std::size_t fwrite(

 // const void* buffer,

 // std::size_t size,

 // std::size_t count,

 // std::FILE* stream);

 // Last argument is implicitly converted from File to

FILE*

 fwrite(msg, sizeof(msg), 1, writer);

 // Note: File destructor called here to close the

file

}

Overflows

Integer math may result in an “overflow” where the result doesn’t fit
into the integer type. C++ doesn’t have C#’s checked and unchecked
contexts. Instead, it handles overflow differently depending on
whether the math is signed or unsigned.

For signed math, an overflow is undefined behavior:

int32_t a = 0x7fffffff;

int32_t b = a + 1; // Overflow. Undefined behavior!

DebugLog(b); // Could be anything!

This isn’t as catastrophic as it may seem. The compiler will usually
just generate an addition instruction and the overflow will be handled
according to the CPU architecture’s rules for overflow. Only in cases
where the compiler can prove a signed integer overflow will happen,
like this example, is it likely to generate unexpected CPU
instructions. It may also generate a compiler warning to bring this to
the attention of the programmer. Usually the result ends up being the
same in C# and C++, but technically it doesn’t have to.

Unsigned math is more forgiving. An overflow is simply performed
modulus 2n where n is the number of bits in the integer type:

uint8_t a = 255;

uint8_t b = a + 1; // Overflow. b = (255 + 1) % 256 = 0.

DebugLog(b); // 0

Arithmetic

We’ve seen a lot of promotion and conversion due to arithmetic
already, but only covered simple cases so far. There are quite a few
more rules for determining which operands are promoted or
converted and what the “common type” arithmetic is performed on
should be.

First of all, C++20 deprecates mixing floating point and enum types
or enum types with other enum types. These were never allowed in
C#.

enum Color

{

 Red,

 Green,

 Blue

};

// Deprecated: mixed enum and float

auto a = Red + 3.14f;

enum RangeType

{

 Melee,

 Distance

};

// Deprecated: mixed enum types

auto b = Red + Melee;

Integers get promoted first. Then, for all the binary operators except
shifts, a book of specific type changes occur. First, if either operand
is a long double then the other operand is converted to a long
double. The same happens for double and float. C# has essentially
the same behavior.

int i = 123;

long double ld = 3.14;

long double sum1 = ld + i; // i is converted from int to

'long double'

DebugLog(sum1); // 126.14

double d = 3.14;

double sum2 = d + i; // i is converted from int to double

DebugLog(sum2); // 126.14

float f = 3.14f;

double sum3 = f + i; // i is converted from int to float

DebugLog(sum3); // 126.14

For signed and unsigned integers, we need to consider the
“conversion rank” of the types involved:

1. bool
2. signed char, unsigned char, and char
3. short and unsigned short
4. int and unsigned int
5. long and unsigned long

6. long long and unsigned long long

char8_t, char16_t, char32_t, and wchar_t have the same
conversion rank as their underlying type, which depends on factors
like the compiler, OS, and CPU architecture.

With that in mind, the operand with lower conversion rank is
converted to the type of the operand with the greater conversion
rank if both operands are either signed or unsigned. C# behaves the
same way.

unsigned char uc = 'A'; // Coversion rank = 2

unsigned long ul = 1; // Conversion rank = 5

// uc has lower conversion rank, so it's converted to

unsigned long

unsigned long sum = uc + ul;

DebugLog(sum); // 66 (ASCII for 'B')

Otherwise, one operand is signed and the other is unsigned. C#
doesn’t allow this, but C++ does. In this case, if the unsigned
operand’s conversion rank is greater than or equal to the signed
operand’s conversion rank then the signed operand is converted to
the type of the unsigned operand:

short s = 123; // Coversion rank = 3

unsigned long ul = 1; // Conversion rank = 5

// s has lower conversion rank, so it's converted to

unsigned long

unsigned long sum = s + ul;

DebugLog(sum); // 124

If that’s not the case but the signed type can represent all the values
of the unsigned type, the unsigned operand converted to the type of
the signed operand:

long l = 123; // Coversion rank = 5

unsigned short us = 1; // Conversion rank = 3

// l has greater conversion rank and long can represent

all the

// values of 'unsigned short', so us is converted to long

long sum = l + us;

DebugLog(sum); // 124

And if that’s not the case either, both operands are converted to the
unsigned counterpart of the signed type:

long l = 123; // Coversion rank = 5

unsigned int ui = 1; // Conversion rank = 4

// Assume int and long are both 4 bytes (e.g. Windows)

// l has greater conversion rank but long can't represent

all the

// values of 'unsigned int', so l is converted from long

to unsigned long

// and ui is converted from unsigned int to unsigned long

unsigned long sum = l + ui;

DebugLog(sum); // 124

Narrowing Conversions

So far we’ve seen types either stay the size size or get bigger.
Sometimes, the types get smaller or otherwise lose precision. These
are called “narrowing” conversions and they’re a subset of the
implicit conversions we saw above. C# never allows these, but C++
does. For example, the conversion from floating point to integer
loses precision by truncating the fractional part:

float f = 3.14f;

int i = f;

DebugLog(i); // 3

Converting from a larger floating point type to a smaller ones may
also lose precision:

long double ld1 = 3.14;

double d1 = ld1; // 'long double' -> double

DebugLog(d1); // 3.14

long double ld2 = 3.14;

float f1 = ld2; // 'long double' -> float

DebugLog(f1); // 3.14

double d2 = 3.14;

float f2 = d2; // double -> float

DebugLog(d2); // 3.14

Converting from an integer or enumeration to a floating point type
might also lose precision if the floating point type can’t exactly
represent the integer:

uint64_t i = 0xffffffffffffffff;

float f = i; // uint64_t -> float

DebugLog(f); // 1.84467e+19

uint64_t i2 = f;

DebugLog(i == i2); // false

These narrowing conversions are allowed by copy initialization as
we’ve seen here, but forbidden by aggregate and list initialization:

// Compiler error: aggegate initialization with narrowing

int i1{3.14f};

IntHolder i2{3.14f};

int i3 = {3.14f};

// Compiler error: list initialization with narrowing

int i4[] = { 3.14f, 3.14f };

// OK: copy initialization with narrowing

int i5 = 3.14f; // copy

int i6(3.14f); // copy

Avoiding narrowing is yet-another reason to prefer initializing with
curly braces.

Conclusion

This concludes the deep dive into C++’s implicit type conversion
system. It’s a lot more permissive than C#. That allows our code to
be more terse, but also opens us up to a lot of potential bugs. So it’s
important that we understand all the rules from numeric promotion to
conversion ranks to overflow handling.

21. Casting and RTTI

const_cast

C# has only one kind of cast: (DestinationType)sourceType. Since
it’s the only option, it must be capable of handling every possible
reason for casting. C++ takes a different tack. It provides a suite of
casts from which we may choose to suit the intention of particular
casting operations.

The first cast in this suite is one of the simplest: const_cast. We use
this when we simply want to treat a const pointer or references as
non-const:

// Remove const from a pointer

int x = 123;

int const * constPtr = &x;

int* nonConstPtr = const_cast<int*>(constPtr);

*nonConstPtr = 456;

DebugLog(x); // 456

// Remove const from a reference

int const & constRef = x;

int& nonConstRef = const_cast<int&>(constRef);

nonConstRef = 789;

DebugLog(x); // 789

// It's OK to cast null

constPtr = nullptr;

int* nullPtr = const_cast<int*>(constPtr);

DebugLog(nullPtr); // null

Note that function pointers and member function pointers can’t be
const_cast.

In the first two examples, we used const_cast to get a non-const
pointer and reference and then modified the value they referred to: x.
That’s perfectly OK because x wasn’t actually const. However, it’s
undefined behavior if we modify a variable that’s actually const:

int const x = 123;

int const & constRef = x;

int& nonConstRef = const_cast<int&>(constRef);

nonConstRef = 789; // Undefined behavior: modifying const

variable x

DebugLog(x); // Could be anything!

So what does const_cast actually do? It’s really just a compile-time
operation to reclassify an expression as non-const. No CPU
instructions are generated because the CPU has no concept of
const. In this sense, const_cast is “free” from a performance
perspective.

reinterpret_cast

The next kind of cast is reinterpret_cast. This is another “free” cast
that generates no CPU instructions. Instead, it just tells the compiler
to “reinterpret” the type of one expression as another type.

We can only use this in particular situations. First, a pointer can be
converted to and from an integer as long as that integer is large
enough to hold all possible pointer values:

// Pointer -> Integer

int x = 123;

int* p = &x;

uint64_t i = reinterpret_cast<uint64_t>(p);

DebugLog(i); // memory address of x

// Integer -> Pointer

int* p2 = reinterpret_cast<int*>(i);

*p2 = 456;

DebugLog(x); // 456

We can also reinterpret nullptr as the integer 0:

uint64_t i = reinterpret_cast<uint64_t>(nullptr);

DebugLog(i); // 0

More commonly, we can reinterpret one kind of pointer as another
kind of pointer:

struct Vector2

{

 float X;

 float Y;

};

struct Point2

{

 float X;

 float Y;

};

Point2 point{2, 4};

Point2* pPoint = &point;

Vector2* pVector = reinterpret_cast<Vector2*>(pPoint);

DebugLog(pVector->X, pVector->Y); // 2, 4

We have to take some precautions in order to use the resulting
pointer safely. First, CPUs have alignment requirements on various
data types such as float. The destination type’s alignment
requirements can’t be stricter than the source type’s alignment
requirements. It’s up to us as programmers to know the alignment
requirements for our target CPU architectures and ensure that we’re
using reinterpret_cast responsibly.

The C++ Standard says using the result of a reinterpret_cast is
undefined behavior except in certain particular cases. The first is if
they’re “similar.” That’s defined as being the same type, pointers to
the same type, pointers to members of the same class and those

members are similar, or arrays of the same size (or one has
unknown size) with similar elements. Here are some examples:

// Similar: pointer to same type

int x = 123;

int* p = reinterpret_cast<int*>(&x); // int* -> int*

DebugLog(*p); // 123

// Similar: array with same dimensions and same type of

elements

int a1[3]{1, 2, 3};

int (&a)[3] = reinterpret_cast<int(&)[3]>(a1);

DebugLog(a[0], a[1], a[2]); // 1, 2, 3

// Not similar: different types of pointers

float* pFloat = reinterpret_cast<float*>(p);

DebugLog(*pFloat); // Undefined behavior

Because undefined behavior may be implemented by a compiler
however it chooses, many compilers are less strict than the C++
Standard requires. The last example of an int* to float* conversion
in particular is commonly allowed by compilers as a kind of “type
punning” similar to what we saw with unions.

If the types aren’t “similar” then we have two more chances to avoid
undefined behavior. First, if one type is the signed or unsigned
version of the same type:

// int* -> unsigned int*

int x = 123;

unsigned int* p = reinterpret_cast<unsigned int*>(&x);

DebugLog(*p); // 123

And second, if we’re reinterpreting as a char, unsigned char or, in
C++17 and later, std::byte. These are specifically allowed so we
can look at the byte representation of objects, such as for
serialization to disk or a network:

// Print the bytes of a Vector2

Vector2 vec{2, 4};

char* p = reinterpret_cast<char*>(&vec);

DebugLog(p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7]);

static_cast

Next up we have our first cast that can generate CPU instructions:
static_cast. The compiler checks a book of conditions to decide
what a static_cast should do. The first check is to see if there’s an
implicit conversion sequence from the source type to the destination
type or if the destination type can be direct-initialized from the source
type. If either is the case, the static_cast behaves like we wrote
DestType tempVariable(sourceType):

struct File

{

 FILE* handle;

 File(const char* path, const char* mode)

 {

 handle = fopen(path, mode);

 }

 ~File()

 {

 fclose(handle);

 }

 operator FILE*()

 {

 return handle;

 }

};

File reader{"/path/to/file", "r"};

FILE* handle = static_cast<FILE*>(reader); // Implicit

conversion

Next, it checks if we’re downcasting from a pointer or reference to a
base class to a pointer or reference to a (non-virtually) derived class:

struct Vector2

{

 float X;

 float Y;

};

struct Vector3 : Vector2

{

 float Z;

};

Vector3 vec;

vec.X = 2;

vec.Y = 4;

vec.Z = 6;

Vector2& refVec2 = vec; // Implicit conversion from

Vector3& to Vector2&

Vector3& refVec3 = reinterpret_cast<Vector3&>(refVec2);

// Downcast

DebugLog(refVec3.X, refVec3.Y, refVec3.Z); // 2, 4, 6

We can also static_cast to void to explicitly discard a value. This is
sometimes used to silence an “unused variable” compiler warning:

Vector2 vec{2, 4};

static_cast<void>(vec); // Discard the result of the cast

If there’s a standard conversion from the destination type to the
source type, static_cast will reverse it. It won’t reverse any lvalue-
to-rvalue conversions, array-to-pointer decay, function-to-pointer
conversions, function pointer conversions, or bool conversions
though.

int i = 123;

float f = static_cast<int>(i); // Undo standard

conversion: int -> float

DebugLog(f); // 123

We can also explicitly perform some implicit conversions with
static_cast: lvalue-to-rvalue, array-to-pointer decay, and function-
to-pointer:

void SayHello()

{

 DebugLog("hello");

}

// lvalue to rvalue conversion

int i = 123;

int i2 = static_cast<int&&>(i);

DebugLog(i2); // 123

// Array to pointer decay

int a[3]{1, 2, 3};

int* p = static_cast<int*>(a);

DebugLog(p[0], p[1], p[2]); // 1, 2, 3

// Function to pointer conversion

void (*pFunc)() = static_cast<void(*)()>(SayHello);

pFunc(); // hello

Scoped enumerations can be converted to integer or floating point
types using static_cast. Since C++20, this works like an implicit
conversion from the enum’s underlying type to the destination type.
Before that, casting to bool was treated differently since only 0 would
become false and everything else would become true.

enum class Color

{

 Red,

 Green,

 Blue

};

Color green{Color::Green};

// Scoped enum -> int

int i = static_cast<int>(green);

DebugLog(i); // 1

// Scoped enum -> float

float f = static_cast<float>(green);

DebugLog(f); // 1

We can go the other way, too: integers and floating point types can
be static_cast to scoped or unscoped enumerations. We can also
cast between enumeration types:

// Integer -> enum

int i = 1;

FgColor g1 = static_cast<FgColor>(i);

DebugLog(g1); // Green

// Floating point -> enum

float f = 1;

FgColor g2 = static_cast<FgColor>(f);

DebugLog(g2); // Green

// Cast between enum types

FgColor g3{FgColor::Green};

BgColor g4 = static_cast<BgColor>(g3);

DebugLog(g4); // Green

It’s undefined behavior if the underlying type of the enum isn’t fixed
and the value being cast to the enum is out of its range. If it is fixed,
the result is just like converting to the underlying type. Floating point
values are first converted to the underlying type.

We can also use static_cast to upcast from a pointer to a member
in a derived class to a pointer to a member in the base class:

float Vector3::* p1 = &Vector3::X;

float Vector2::* p2 = static_cast<float Vector2::*>(p1);

Vector3 vec;

vec.X = 2;

vec.Y = 4;

vec.Z = 6;

DebugLog(vec.*p1, vec.*p2); // 2, 2

And finally, static_cast can be used like reinterpret_cast to
convert a void* to any other pointer type. The same caveats about
alignment and type similarity apply.

int i = 123;

void* pv = &i;

int* pi = static_cast<int*>(pv);

DebugLog(*pi); // 123

C-Style Cast and Function-Style Cast

A “C-style” cast looks like a cast in C as well as C#:
(DestinationType)sourceType. It behaves quite differently in C++
compared to C#. In C++, it’s mostly a shorthand for the first “named”
cast whose prerequisites are met in this order:

1. const_cast<DestinationType>(sourceType)
2. static_cast<DestinationType>(sourceType) with more

leniency: pointers and references to or from derived classes or
members of derived classes can be cast to pointers or
references to base classes or members of base classes

3. static_cast (with more leniency) then const_cast
4. reinterpret_cast<DestinationType>(sourceType)
5. reinterpret_cast then const_cast

// Uses const_cast (#1)

int const i1 = 123;

int i2 = (int)i1;

DebugLog(i2); // 123

// Uses static_cast (#2)

Vector2 vec{2, 4};

Vector3* pVec = (Vector3*)&vec;

DebugLog(pVec->X, pVec->Y); // 2, 4 (undefined behavior

to use Z!)

// Uses static_cast the const_cast (#3)

Vector2 const * pConstVec = &vec;

Vector3* pVec3 = (Vector3*)pConstVec;

DebugLog(pVec3->X, pVec3->Y); // 2, 4 (undefined behavior

to use Z!)

// Uses reinterpret_cast (#4)

float* f1 = (float*)&i2;

DebugLog(*f1); // 1.7236e-43

// Uses reinterpret_cast then const_cast (#5)

float* f2 = (float*)&i1;

DebugLog(*f2); // 1.7236e-43

A “function-style” cast works just like a C-style cast. It looks like a
function call and even requires the type to have only one word: int
not unsigned int. Be careful not to mistake it for a function call or
class initialization.

int i = 123;

float f = float(i);

DebugLog(f); // 123

dynamic_cast

All of the casts we’ve seen so far are “static.” That means the way
they operate is determined at compile time and don’t depend on the
run-time value of the expression being cast. For example, consider
this downcast:

void PrintZ(Vector2& vec)

{

 // Downcast

 Vector3& refVec3 = reinterpret_cast<Vector3&>(vec);

 // Undefined behavior if vec isn't really a Vector3

 DebugLog(refVec3.X, refVec3.Y, refVec3.Z);

}

Remember that reinterpret_cast generates no CPU instructions.
This means the compiler isn’t generating any CPU instructions that
would check if vec is really a Vector3. If it is, this code works just
fine. If it’s not, reading Z will read the four bytes that come after
wherever the Vector2 is in memory. That’s almost certainly not a
valid Z value and will cause severe errors in our program logic when
we try to use it that way. It’s also undefined behavior, so the compiler
might generate surprising CPU instructions such as just skipping
reading and printing Z altogether.

To address this issue, C++ has a “safe” cast called dynamic_cast. It
works very similarly to C#’s only cast.

Like static_cast, a sequence of checks is performed to decide what
the CPU should do. First, we can cast to the same type or to add

const:

// Cast to same type

Vector2 v{2, 4};

Vector2& r1 = v;

Vector2& r2 = dynamic_cast<Vector2&>(r1);

DebugLog(r2.X, r2.Y); // 2, 4

// Cast to add const

Vector2 const & r3 = dynamic_cast<Vector2 const &>(r1);

DebugLog(r3.X, r3.Y); // 2, 4

Second, if the value is null then the result is null:

Vector2* p1 = nullptr;

Vector2* p2 = dynamic_cast<Vector2*>(p1);

DebugLog(p2); // 0

Third, we can upcast from a pointer or reference to a derived class to
a pointer or reference to a base class:

Vector3 vec;

vec.X = 2;

vec.Y = 4;

vec.Z = 6;

Vector3& r3 = vec;

Vector2& r2 = dynamic_cast<Vector2&>(r3);

DebugLog(r2.X, r2.Y); // 2, 4

Fourth, we can cast pointers to classes that have at least one
virtual function to void* and we’ll get a pointer to the most-derived
object that pointer points to:

struct Combatant

{

 virtual ~Combatant()

 {

 }

};

struct Player : Combatant

{

 int32_t Id;

};

Player player;

player.Id = 123;

Combatant* p = &player;

void* pv = dynamic_cast<void*>(p); // Downcast to most-

derived class: Player*

Player* p2 = reinterpret_cast<Player*>(pv);

DebugLog(p2->Id); // 123

Finally, we have the primary use case of dynamic_cast: a downcast
from a pointer or reference to a base class to a pointer or reference
to a derived class. This generates CPU instructions that examine the
object being pointed to or referenced by the expression to cast. If
that object is really a base class of the destination type and that
destination type has only one sub-object of the base class, which
may not be the case with non-virtual inheritance, then the cast
succeeds with a pointer or reference to the derived class:

Player player;

player.Id = 123;

Combatant* p = &player;

Player* p2 = dynamic_cast<Player*>(p); // Downcast

DebugLog(p2->Id); // 123

This can also be used to perform a “sidecast” from one base class to
another base class:

struct RangedWeapon

{

 float Range;

 virtual ~RangedWeapon()

 {

 }

};

struct MagicWeapon

{

 enum { FireType, WaterType, ArcaneType } Type;

};

struct Staff : RangedWeapon, MagicWeapon

{

 const char* Name;

};

Staff staff;

staff.Name = "Staff of Freezing";

staff.Range = 10.0f;

staff.Type = MagicWeapon::WaterType;

Staff& staffRef = staff;

RangedWeapon& rangedRef = staffRef; // Implicit

conversion upcasts

MagicWeapon& magicRef = dynamic_cast<MagicWeapon&>

(rangedRef); // Sidecast

DebugLog(magicRef.Type); // 1

If neither the downcast nor the sidecast succeed, the cast fails.
When pointers are being cast, the cast evaluates to a null pointer of
the destination type. If references are being cast, a std::bad_cast
exception is thrown:

struct Combatant

{

 virtual ~Combatant()

 {

 }

};

struct Player : Combatant

{

 int32_t Id;

};

struct Enemy : Combatant

{

 int32_t Id;

};

// Make a Combatant: the base class

Combatant combatant;

Combatant* pc = &combatant;

Combatant& rc = combatant;

// Cast fails. Combatant object isn't a Player. Null

returned.

Player* pp = dynamic_cast<Player*>(pc);

DebugLog(pp); // 0

try

{

 // Cast fails. Combatant object isn't a Player.

std::bad_cast thrown.

 Player& rp = dynamic_cast<Player&>(rc);

 DebugLog(rp.Id); // Never called

}

catch (std::bad_cast const &)

{

 DebugLog("cast failed"); // Gets printed

}

Note that using dynamic_cast on this during a constructor is
undefined behavior unless the destination type is the same class
type or a base class type. We’ll see why in the next section.

Run-Time Type Information

In order to implement dynamic_cast, the compiler must generate
what’s known as Run-Time Type Information or RTTI. The exact
format of this information is compiler-specific, but the compiler will
generate data to be used at runtime by dynamic_cast in order to
determine the type of a particular object.

Since dynamic_cast only works on types with at least one virtual
function, it can take advantage of the object’s virtual function table
or “vtable.” This is a compiler-generated array of function pointers for
all the virtual functions of a class. One table will be generated for
each class in the inheritance hierarchy. A pointer to the table, known
as a “virtual table pointer” or “vpointer,” will be added as a data
member of all classes in the hierarchy and initialized during
construction.

This virtual table pointer can therefore also be used to identify the
class of an object since there is one virtual function table per class.
The inheritance hierarchy is then conceptually expressed as a tree of
virtual table pointers with implementation details varying by compiler.

Because all this RTTI data adds to the executable size, many
compilers allow it to be disabled. That also disables dynamic_cast as
it depends on RTTI.

typeid

There is one other use of RTTI: the typeid operator. It’s used to get
information about a type, similar to typeof or GetType in C#. The
operand can be either be named statically like typeof in C# or
dynamically like GetType in C# to look up the type based on an
object’s value. The C++ Standard Library’s <typeinfo> header is
required to use this.

// Static usage based on type

std::type_info const & ti1{typeid(Combatant)};

// Dynamic usage based on variable with a virtual

function

Enemy enemy;

std::type_info const & ti2{typeid(enemy)};

// Dynamic usage based on variable with no virtual

function

// Equivalent to static usage: typeid(int)

int i = 123;

std::type_info const & ti3{typeid(i)};

It evaluates to a const std::type_info which has only a few useful
members:

operator==(const std::type_info&) and operator!=(const
std::type_info&) to compare types

std::size_t hash_code() to get an integer that’s always the
same for a given type
const char* name() to get the type’s string name

When using typeid on a null pointer, a bad_typeid is thrown:

Enemy* pe = nullptr;

try

{

 // Doesn't dereference null

 // Instead, attempts to get the type_info for what pe

points to

 std::type_info const & ti{typeid(*pe)};

 // Not printed

 DebugLog(ti.name());

}

catch (std::bad_typeid const &)

{

 DebugLog("bad typeid call"); // Is printed

}

One common surprise with typeid is that it ignores const:

DebugLog(typeid(int) == typeid(const int)); // true

Another is that the name member function doesn’t return any specific
string. That string is also usually some compiler-specific code that

may or may not have the name of the type from the source code:

// All of these will vary from compiler to compiler

DebugLog(typeid(int).name()); // i

DebugLog(typeid(long).name()); // l

DebugLog(typeid(Enemy).name()); // 5Enemy

One more is that the std::type_info for one call might not be the
same object as the std::type_info for another call, even if they’re
the same type. The hash_code member function should be used
instead:

DebugLog(&typeid(int) == &typeid(int)); // Maybe false

DebugLog(typeid(int).hash_code() ==

typeid(int).hash_code()); // Always true

Conclusion

As is often the case when comparing the two languages, C++
provides many options when C# provides only a few. In the case of
casting, C++ provides a wide variety of named, C-style, and function-
style casts for specific purposes while C# essentially only provides
dynamic_cast.

When used appropriately, this can make many casts “free” as no
CPU instructions will be generated and no size will be added to the
executable. When used inappropriately, undefined behavior may
cause severe errors such as crashes and data corruption. It’s up to
us as programmers to know the rules of casting and to judiciously
choose the appropriate cast for our task. The consequences, even
with thrown exceptions in C#, of careless casting really demand that
we exercise caution regardless of language and cast type.

22. Lambdas

Basic Syntax

Syntactically, lambdas look different in C++ than they do in C#. First,
there’s no equivalent to C#’s “expression lambdas:” (arg1, arg2,
...) => expr. C++ only has the equivalent of C#’s “statement
lambdas:” (arg1, arg2, ...) => { stmnt1; stmnt2; ... }. In their
simplest form, they look like this:

[]{ DebugLog("hi"); }

The first part ([]) is the list of captures, which we’ll go into deeply in
a bit. The second part ({ ... }) is the list of statements to execute
when the lambda is invoked.

Now let’s add a parameters list:

[](int x, int y){ return x + y; }

Besides the capture list ([]) and the omission of an => after the
parameters list, this now looks just like a C# lambda. In the first form
that omitted the parameters list, the lambda simply takes no
parameters.

Note that, unlike all the named functions we’ve seen so far, there’s
no return type stated here. The return type is implicitly deduced by
the compiler by looking at the type of our return statements. That’s
just like we’ve seen before when declaring functions with an auto
return type or what we get in C#.

If we’d rather explicitly state the return type, we can do so with the
“trailing” return type syntax:

[](int x, int y) -> int { return x + y; }

Like normal functions, we can also take auto-typed parameters:

[](auto x, auto y) -> auto { return x + y; }

[](auto x, auto y) { return x + y; } // Trailing return

type is optional

[](auto x, int y) { return x + y; } // Not every

parameter has to be auto

Lambda Types

So what type does a lambda expression have? In C#, we get a type
that can be converted to a delegate type like Action or Func<int,
int, int>. In C++, the compiler generates an unnamed class. It
looks like this:

// Compiler-generated class for this lambda:

// [](int x, int y) { return x + y; }

// Not actually named LambdaClass

class LambdaClass

{

 // Lambda body

 // Not actually named LambdaFunction

 static int LambdaFunction(int x, int y)

 {

 return x + y;

 }

public:

 // Default constructor

 // Only if no captures

 LambdaClass() = default;

 // Copy constructor

 LambdaClass(const LambdaClass&) = default;

 // Move constructor

 LambdaClass(LambdaClass&&) = default;

 // Destructor

 ~LambdaClass() = default;

 // Function call operator

 int operator()(int x, int y) const

 {

 return LambdaFunction(x, y);

 }

 // User-defined conversion function to function

pointer

 // Only if no captures

 operator decltype(&LambdaFunction)() const noexcept

 {

 return LambdaFunction;

 }

};

Since it’s just a normal class, we can use it like a normal class. The
only difference is that we don’t know its name, so we have to use
auto for its type:

void Foo()

{

 // Instantiate the lambda class. Equivalent to:

 // LambdaClass lc;

 auto lc = [](int x, int y){ return x + y; };

 // Invoke the overloaded function call operator

 DebugLog(lc(200, 300)); // 500

 // Invoke the user-defined conversion operator to get

a function pointer

 int (*p)(int, int) = lc;

 DebugLog(p(20, 30)); // 50

 // Call the copy constructor

 auto lc2{lc};

 DebugLog(lc2(2, 3)); // 5

 // Destructor of lc and lc2 called here

}

Default Captures

So far, our lambdas have always had an empty list of captures: []. In
C#, captures are always implicit. In C++, we have much more control
over what we capture and how we capture it.

To start, let’s look at the most C#-like kind of capture: [&]. This is a
“capture default” that says to the compiler “capture everything the
lambda uses as a reference.” Here’s how it looks:

// Something outside the lambda

int x = 123;

// Default capture mode set to "by reference"

auto addX = [&](int val)

{

 // Lambda references "x" that's outside the lambda

 // Compiler captures "x" by reference: int&

 return x + val;

};

DebugLog(addX(1)); // 124

We can see that x is captured by reference by modifying x after we
capture it:

int x = 123;

// Capture reference to x, not a copy of x

auto addX = [&](int val) { return x + val; };

// Modify x after the capture

x = 0;

// Invoke the lambda

// Lambda uses the reference to x, which is 0

DebugLog(addX(1)); // 1

If we don’t like this behavior, we can switch the “capture default” to
[=] which means “capture everything the lambda uses as a copy.”
Here’s how that looks:

int x = 123;

// Capture a copy of x, not a reference to x

auto addX = [=](int val) { return x + val; };

// Modify x after the capture

// Does not modify the lambda's copy

x = 0;

// Invoke the lambda

// Lambda uses the copy of x, which is 123

DebugLog(addX(1)); // 124

While it’s deprecated starting with C++20, it’s important to note that
[=] can implicitly capture a reference to the current object: *this.

Here’s one way that happens:

struct CaptureThis

{

 int Val = 123;

 auto GetLambda()

 {

 // Default capture mode is "copy"

 // Lambda uses "this" which is outside the lambda

 // "this" is copied to a CaptureThis*

 return [=]{ DebugLog(this->Val); };

 }

};

auto GetCaptureThisLambda()

{

 // Instantiate the class on the stack

 CaptureThis ct{};

 // Get a lambda that's captured a pointer to "ct"

 auto lambda = ct.GetLambda();

 // Return the lambda. Calls the destructor for "ct".

 return lambda;

}

void Foo()

{

 // Get a lambda that's captured a pointer to "ct"

which has had its

 // destructor called and been popped off the stack

 auto lambda = GetCaptureThisLambda();

 // Dereference that captured pointer to "ct"

 lambda(); // Undefined behavior: could do anything!

}

This example happened to create a “dangling” pointer to this, but
the same can happen with any other pointer or reference. It’s
important to make sure that captured pointers and references don’t
end their lifespan before the lambda does!

Individual Captures

The next kind of element we can add to a capture list is called an
“individual capture” since it captures something specific from outside
the lambda.

There are a few forms of individual capture. First up, we can simply
put a name:

int x = 123;

// Individually capture "x" by copy

auto addX = [x](int val)

{

 // Use the copy of "x"

 return x + val;

};

// Modify "x" after the capture

x = 0;

DebugLog(addX(1)); // 124

If we want to initialize the captured copy, we can add any of the
usual forms of initialization:

int x = 123;

// Individually capture "x" by copying it to a variable

named "a"

auto addX = [a = x](int val)

{

 // Use the copy of "x" via the "a" variable

 return a + val;

};

// Modify "x" after the capture

x = 0;

DebugLog(addX(1)); // 124

The captured variable can even have the same name as what it
captures, similar to when we used just [x]:

[x = x](int val){ return x + val; };

Other initialization forms are also available. Here are a couple:

[a{x}](int val){ return a + val; };

[a(x)](int val){ return a + val; };

In contrast, we can individually capture by reference:

int x = 123;

// Individually capture "x" by reference

auto addX = [&x](int val)

{

 // Use the reference to "x"

 return x + val;

};

// Modify "x" after the capture

x = 0;

DebugLog(addX(1)); // 1

We can initialize individually-captured references, too:

int x = 123;

// Individually capture "x" by reference as a reference

named "a"

auto addX = [&a = x](int val)

{

 // Use the reference to "x" via "a"

 return a + val;

};

// Modify "x" after the capture

x = 0;

DebugLog(addX(1)); // 1

Regardless of whether we capture by reference or by copy, we can
initialize using arbitrary expressions rather than simply the name of a
variable:

auto lambda = [a = 2+2]{ DebugLog(a); };

lambda(); // 4

We also have two ways to individually capture this. The first is just
[this] which captures this by reference:

struct CaptureThis

{

 int Val = 123;

 int Foo()

 {

 // Capture "this" by reference

 auto lambda = [this]

 {

 // Use captured "this" reference

 return this->Val;

 };

 // Modify "Val" after the capture

 this->Val = 0;

 // Invoke the lambda

 // Uses reference to "this" which has a modified

Val

 return lambda();

 }

};

CaptureThis ct{};

DebugLog(ct.Foo()); // 0

The second way to capture this is with [*this], which makes a
copy of the class object:

struct CaptureThis

{

 int Val = 123;

 int Foo()

 {

 // Capture "this" by copy

 auto lambda = [*this]

 {

 // Use captured "this" copy

 return this->Val;

 };

 // Modify "Val" after the capture

 this->Val = 0;

 // Invoke the lambda

 // Uses copy of "*this" which has the original

Val

 return lambda();

 }

};

CaptureThis ct{};

DebugLog(ct.Foo()); // 123

Captured Data Members

So what does it mean when a lambda “captures” something? Mostly,
it just means that data members are added to the lambda’s class
and initialized via its constructor. Say we have this lambda:

[&m{multiply}, a{add}](float val){ return m*val + a; }

We can use the lambda like this:

float multiplyAndAddLoopLambda(float multiply, float add,

int n)

{

 // Capture "multiply" by reference as "m"

 // Capture "add" by copy as "a"

 auto madd = [&m{multiply}, a{add}](float val){ return

m*val + a; };

 float cur = 0;

 for (int i = 0; i < n; ++i)

 {

 cur = madd(cur);

 }

 return cur;

}

DebugLog(multiplyAndAddLoopLambda(2.0f, 1.0f, 5)); // 31

The reason is that the compiler generates a class for the lambda that
looks like this:

// Compiler-generated class for this lambda:

// [&m{multiply}, a{add}](float val){ return m*val + a;

}

// Not actually named LambdaClass

class LambdaClass

{

 // "Captures" of the lambda

 // Order is unspecified

 // Not actually named "m" and "a"

 float& m;

 const float a;

public:

 // Constructor

 // Initializes captures

 LambdaClass(float& multiply, float add)

 : m{multiply}, a{add}

 {

 }

 // Copy constructor

 LambdaClass(const LambdaClass&) = default;

 // Move constructor

 LambdaClass(LambdaClass&&) = default;

 // Destructor

 ~LambdaClass() = default;

 // Function call operator

 float operator()(float val) const

 {

 // Lambda body

 return m*val + a;

 }

};

Notice that the default constructor has been replaced by a
constructor that initializes the captures, be they by reference or copy.
If there’s no capture initializer ([x] or [&x]), captures are direct-
initialized. Otherwise, they’re copy-initialized or direct-initialized as
specified by the capture initializer ([x{y}] or [x = y]). Array
elements are direct-initialized in sequential order.

Another change in this compiler-generated lambda class is that the
user-defined conversion operator to a function pointer has been
removed. That’s because a plain function pointer doesn’t have
access to the this pointer required to get the captures it needs to do
its work. It’s as though we tried to write this:

float LambdaFunction(float val)

{

 // Compiler error: no "m"

 // Compiler error: no "a"

 return m*val + a;

}

Since we may need control over the modifiers placed on the lambda
class’ data members, we can add keywords like mutable and
noexcept to the lambda and they’ll be added to the data members
too:

int x = 1;

// Compiler error

// LambdaClass::operator() is const and LambdaClass::x

isn't mutable

auto lambda1 = [x](){ x = 2; };

// OK: LambdaClass::x is mutable

auto lambda2 = [x]() mutable { x = 2; };

When we used the lambda above, the compiler generated code to
use the lambda’s class that looks more or less like this:

float multiplyAndAddLoopClass(float multiply, float add,

int n)

{

 // "Capture" the "multiply" and "add" variables as

data members of "madd"

 LambdaClass madd{multiply, add};

 float cur = 0;

 for (int i = 0; i < n; ++i)

 {

 cur = madd(cur);

 }

 return cur;

}

DebugLog(multiplyAndAddLoopClass(2.0f, 1.0f, 5)); // 31

Capture Rules

There are a number of language rules about how we can use
captures. First, if the default capture mode is by reference, individual
captures can’t also be by reference:

int x = 123;

// Compiler error: can't individually capture by

reference when the default

// capture mode is by reference

auto lambda = [&, &x]{ DebugLog(x); };

Second, if the default capture mode is by copy then all individual
captures must be by reference, this, or *this:

// Compiler error: can't individually capture by copy

when the default

// capture mode is by copy

auto lambda1 = [=, =x]{ DebugLog(x); };

auto lambda2 = [=, &x]{ DebugLog(x); }; // OK

auto lambda3 = [=, this]{ DebugLog(this->Val); }; // OK

auto lambda4 = [=, *this]{ DebugLog(this->Val); }; // OK

Third, we can only capture a single name or this once:

int x = 123;

// Compiler error: can't capture by name twice

auto lambda1 = [x, x]{ DebugLog(x); };

// Compiler error: can't capture by name twice (with

initialization)

auto lambda2 = [x, x=x]{ DebugLog(x); };

// Compiler error: can't capture by name twice (mixed

capture modes)

auto lambda3 = [x, &x]{ DebugLog(x); };

// Compiler error: can't capture "this" twice

auto lambda4 = [this, this]{ DebugLog(this->Val); };

// Compiler error: can't capture "this" twice (mixed

capture modes)

auto lambda5 = [this, *this]{ DebugLog(this->Val); };

Fourth, if the lambda isn’t in a block or a class’ default data member
initializer, it can’t use default captures or have individual captures
without an initializer:

// Global scope...

// Compiler error: can't use default captures here

auto lambda1 = [=]{ DebugLog("hi"); };

auto lambda2 = [&]{ DebugLog("hi"); };

// Compiler error: can't use uninitialized captures here

auto lambda3 = [x]{ DebugLog(x); };

auto lambda4 = [&x]{ DebugLog(x); };

Fifth, class members can only be captured individually using an
initializer:

class Test

{

 int Val = 123;

 void Foo()

 {

 // Compiler error: member must be captured with

an initializer

 auto lambda1 = [Val]{ DebugLog(Val); };

 auto lambda2 = [Val=Val]{ DebugLog(Val); }; // OK

 auto lambda3 = [&Val=Val]{ DebugLog(Val); }; //

OK

 }

};

Sixth, and similarly, class members are never captured by default
capture modes. Only this is captured and members are accessed
from that pointer.

class Test

{

 int Val = 123;

 void Foo()

 {

 // Member not captured by default capture mode

 // Only "this" is captured

 auto lambda1 = [=]{ DebugLog(Val); };

 auto lambda2 = [&]{ DebugLog(Val); };

 }

};

Seventh, lambdas in default arguments can’t capture anything:

// Compiler error: lambda in default argument can't have

a capture

void Foo(int val = ([=]{ return 2 + 2; })())

{

 DebugLog(val);

}

Eigth, anonymous union members can’t be captured:

union

{

 int32_t intVal;

 float floatVal;

};

intVal = 123;

// Compiler error: can't capture an anonymous union

member

auto lambda = [intVal]{ DebugLog(intVal); };

Ninth, and finally, if a nested lambda captures something that’s
captured by the lambda it’s nested in, the nested capture is
transformed in two cases. The first case is if the lambda it’s nested in
captured something by copy. In this case, the nested lambda
captures the data member of outer lambda’s class instead of what
was originally-captured.

void Foo()

{

 int x = 1;

 auto outerLambda = [x]() mutable

 {

 DebugLog("outer", x);

 x = 2;

 auto innerLambda = [x]

 {

 DebugLog("inner", x);

 };

 innerLambda();

 };

 x = 3;

 outerLambda(); // outer 1 inner 2

}

The second case is if the lambda it’s nested in captured something
by reference. In this case, the nested lambda captures the original
variable or this:

void Foo()

{

 int x = 1;

 auto outerLambda = [&x]() mutable

 {

 DebugLog("outer", x);

 x = 2;

 auto innerLambda = [&x]

 {

 DebugLog("inner", x);

 };

 innerLambda();

 };

 x = 3;

 outerLambda(); // outer 3 inner 2

}

IILE

A common idiom in C++, seen above in the default function
argument example, is known as an Immediately-Invoked Lambda
Expression. We can use these in a variety of situations to work
around various language rules. For example, many C++
programmers strive to keep everything const that can be const. If,
however, the value to initialize a const variable to requires multiple
statements then it may be necessary to remove const. For example:

Command command;

switch (byteVal)

{

 case 0:

 command = Command::Clear;

 break;

 case 1:

 command = Command::Restart;

 break;

 case 2:

 command = Command::Enable;

 break;

 default:

 DebugLog("Unknown command: ", byteVal);

 command = Command::NoOp;

}

Here we couldn’t make command into a const variable even though
we may only be initializing it in the switch and never setting it

afterward. We could have transformed the switch into a chain of
conditional operators, but then we wouldn’t be able to print the error
message in the default case:

const Command command = byteVal == 0 ?

 Command::Clear :

 byteVal == Command::Restart ?

 Command::Enable :

 Command::NoOp;

}

// Unnecessary branch instruction: we already determined

it's NoOp above

if (command == Command::NoOp)

{

 DebugLog("Unknown command: ", byteVal);

}

To get around this, we can use an IILE to wrap the switch. To do so,
we put parentheses around the lambda and then parentheses
afterward to immediately invoke it:

const Command command = ([byteVal]{

 switch (byteVal)

 {

 case 0: return Command::Clear;

 case 1: return Command::Restart;

 case 2: return Command::Enable;

 default:

 DebugLog("Unknown command: ", byteVal);

 return Command::NoOp;

 }})();

The compiler will then create an instance of the lambda class that’s
destroyed at the end of the statement. The overhead of the
constructor and destructor will be optimized away, effectively making
the IILE and the const it enables “free.”

C# Equivalency

We’ve compared C++ lambdas to C# lambdas a little so far, but let’s
take a closer look. First, we’ve seen that only “statement lambdas”
are supported in C++. We can’t write a C# “expression lambda” like
this:

// C#

(int x, int y) => x + y

This example also shows another difference: C# lambda parameters
are always explicitly typed. C++ lambda parameters may be auto to
support a variety of argument types:

auto lambda = [](auto x, auto y){ return x + y; };

// int arguments

DebugLog(lambda(2, 3)); // 5

// float arguments

DebugLog(lambda(3.14f, 2.0f)); // 5.14

Similarly, C++ return types may be auto and that is in fact the default
when a trailing return type like -> float isn’t used. C# lambdas must
always have an implicit return type. To force it, a cast is typically
used within the body of the lambda:

// C#

(float x, float y) => { return (int)(x + y); };

On the other hand, C# is more explicit than C++ when storing the
lambda in a variable as var cannot be used:

// C#

Func<int, int, int> f1 = (int x, int y) => { return x +

y;}; // OK

var f2 = (int x, int y) => { return x + y;}; // Compiler

error

C++ allows for auto:

auto lambda = [](int x, int y){ return x + y; };

C# lambdas support discarding arguments:

// C#

Func<int, int, int> f = (int x, int _) => { return x; };

// Discard y

C++ can do that by either omitting the name, similar to _, or by
casting the argument to void:

// Omit argument name

auto lambda1 = [](int x, int){ return x; };

// Cast argument to void

auto lambda2 = [](int x, int y){ static_cast<void>(y);

return x; };

C# has static lambdas to prevent capturing local variables or non-
static fields. That’s the default in C++. Capturing in C++ is opt-in via
default and individual captures:

int x = 123;

// Capture nothing

// Compiler error: can't access x

auto lambda1 = []{ DebugLog(x); };

// Capture implicitly by copy

auto lambda2 = [=]{ DebugLog(x); };

// Capture implicitly by reference

auto lambda3 = [&]{ DebugLog(x); };

// Capture explicitly by copy

auto lambda4 = [x]{ DebugLog(x); };

// Capture explicitly by reference

auto lambda5 = [&x]{ DebugLog(x); };

C# forbids capturing in, ref, and out variables. C++ references and
pointers, the closest match to C#, can be freely captured in a variety
of ways.

C# supports async lambdas as it does with other kinds of functions.
C++ has no built-in async and await system, so these are not
supported.

Finally, and most significantly, C++ lambdas are not a delegate as
they are in C#. C++ has no concept of managed types or any built-in
construct that operates like a delegate with its garbage-collection
and support for multiple listeners determined at runtime.

Instead, C++ lambdas are just regular C++ classes. They have
constructors, assignment operators, destructors, overloaded
operators, and user-defined conversion operators. As such, they
behave like other C++ class objects rather than as managed,
garbage-collected C# classes.

Conclusion

Lambdas in both languages fulfill a similar role: to provide unnamed
functions. Aside from async lambdas in C#, the C++ version of
lambdas offers a much broader feature set. The two languages’
approaches diverge as C# makes the trade-off in favor of safety by
making lambdas be managed delegates. C++ takes the low, or often
zero, overhead approach of using regular classes at the cost of
possible bugs such as dangling pointers and references.

23. Compile-Time Programming

Constant Variables

C# has const fields of classes and structs. They must be
immediately initialized by a constant expression, which is one that’s
evaluated at compile time. Their type must be a primitive like int and
float or string. A const is implicitly static and readonly.

Likewise, C++ has constexpr variables. They must be “literal types”
which include primitives like int and float, but also references,
classes that meet certain criteria, arrays of “literal types,” or void.
They are implicitly const, but not static.

struct MathConstants

{

 // Constant member variable

 // Implicitly `const`

 // Not implicitly `static`. Need to add the keyword.

 static constexpr float PI = 3.14f;

};

// Constant global variable

constexpr int32_t numGamesPlayed = 0;

void Foo()

{

 // Constant local variable

 constexpr int32_t expansionMultiplier = 3;

 // Constant reference

 // Need to add `const` because `numGamesPlayed` is

implicitly `const`

 constexpr int32_t const& ngp = numGamesPlayed;

 // Constant array

 // Implicitly `const` with `const` elements

 constexpr int32_t exponentialBackoffDelays[4] = {

100, 200, 400, 800 };

}

So far we’ve just used primitives, references to primitives, and arrays
of primitives. Classes are allowed too, but with a few restrictions.
First, they must be either an aggregate, a lambda, or have at least
one non-copy, non-move constexpr constructor. We’ll get into
constexpr functions in the next section.

struct NonLiteralType

{

 // Delete the copy and move constructors

 NonLiteralType(const NonLiteralType&) = delete;

 NonLiteralType(const NonLiteralType&&) = delete;

private:

 // Add a private non-static data member so it's not

an aggregate

 int32_t Val;

};

// Compiler error: not a "literal type"

constexpr NonLiteralType nlt{};

Second, it must have a constexpr destructor.

struct NonLiteralType

{

 // Destructor isn't constexpr

 NonLiteralType()

 {

 }

};

// Compiler error: NonLiteralType doesn't have a

constexpr destructor

constexpr NonLiteralType nlt{};

struct LiteralTypeA

{

 // Explicitly compiler-generated destructor is

constexpr

 LiteralTypeA() = default;

};

struct LiteralTypeB

{

 // Implicitly compiler-generated destructor is

constexpr

};

// OK

constexpr LiteralTypeA lta{};

constexpr LiteralTypeB ltb{};

Third, if it’s a union then at least one of its non-static data members
must be a “literal type.” If it’s not a union, all of its non-static data
members and all the data members of its base classes must be
“literal types.”

union NonLiteralUnion

{

 NonLiteralType nlt1;

 NonLiteralType nlt2;

};

// Compiler error: all of the union's non-static data

members are non-literal

constexpr NonLiteralUnion nlu{};

struct NonLiteralStruct

{

 NonLiteralType nlt1;

 int32_t Val; // Primitives are literal types

};

// Compiler error: not all of the struct's non-static

data members are literal

constexpr NonLiteralStruct nls{};

If we satisfy these requirements, we’re free to make constant class
variables. Here’s a simple aggregate:

struct Vector2

{

 float X;

 float Y;

};

// Constant class instance

constexpr Vector2 ORIGIN{0, 0};

One last thing to keep in mind with constexpr variables: they’re
incompatible with constinit variables. This C++20 keyword is used
to require that a variable be constant-initialized:

// Requires `ok` to be constant-initialized

constinit const char* ok = "OK";

// Compiler error: can't be both constexpr and constinit

consteval constinit const char* ok2 = "OK";

// Compiler error: not initialized with a constant

constinit const char* err = rand() == 0 ? "f" : "t";

Constant Functions

Functions in C++ may also be constexpr. This means they can be
executed at compile time:

constexpr int32_t SumOfFirstN(int32_t n)

{

 int32_t sum = 0;

 for (int32_t i = 1; i <= n; ++i)

 {

 sum += i;

 }

 return sum;

}

// 1 + 2 + 3

DebugLog(SumOfFirstN(3)); // 6

Because 3 is a compile-time constant, the call to SumOfFirstN(3) will
be executed during compilation and replaced by the return value to
become:

DebugLog(6); // 6

If the argument to SumOfFirstN isn’t a compile-time constant,
SumOfFirstN will be compiled and called like normal:

// Read `n` from a file

FILE* handle = fopen("/path/to/file", "r");

int32_t n{0};

fread(&n, sizeof(n), 1, handle);

// Argument not known at compile time

// Depends on the state of the file system

// SumOfFirstN call happens at runtime

DebugLog(SumOfFirstN(n)); // 6

fclose(handle);

If we don’t want the function to be callable at runtime, such as to
avoid accidentally increasing the executable size or performing
compile-time computation at runtime, C++20 allows us to replace
constexpr with consteval. The only difference between constexpr
and consteval is that we’ll get a compiler error if we try to call a
consteval function at runtime.

consteval int32_t SumOfFirstN(int32_t n)

{

 int32_t sum = 0;

 for (int32_t i = 1; i <= n; ++i)

 {

 sum += i;

 }

 return sum;

}

In order to be constexpr, functions must meet certain criteria. Since
their introduction in C++11, this criteria has been greatly relaxed in
C++14 and C++20. Future versions of the language will likely
continue the trend. For now, we’ll just look at the rules for C++20.

First, all of their parameters and their return type must be “literal
types.”

// Not a literal type due to non-constexpr destructor

struct NonLiteral

{

 ~NonLiteral()

 {

 }

};

// Compiler error: constexpr function parameters must be

literal types

constexpr void Foo(NonLiteral nl)

{

}

// Compiler error: constexpr function return value must

be a literal type

constexpr NonLiteral Goo()

{

 return {};

}

Second, a constexpr constructor or destructor can’t be in a class
that has virtual base classes or non-constexpr base class
constructors or destructors.

struct NonLiteralBase

{

};

struct NonLiteralCtor : virtual NonLiteralBase

{

 // Compiler error: constructor can't be constexpr

with virtual base classes

 constexpr NonLiteralCtor()

 {

 }

};

struct NonLiteralDtor : virtual NonLiteralBase

{

 // Compiler error: destructor can't be constexpr with

virtual base classes

 constexpr ~NonLiteralDtor()

 {

 }

};

Third, the body of the function can’t have any goto statements or
labels except case and default in switch statements:

constexpr int32_t GotoLoop(int32_t n)

{

 int32_t sum = 0;

 int32_t i = 1;

 // Compiler error: constexpr function can't have non-

case, non-default label

beginLoop:

 if (i > n)

 {

 // Compiler error: constexpr function can't have

goto

 goto endLoop;

 }

 sum += i;

 // Compiler error: constexpr function can't have non-

case, non-default label

endLoop:

 return sum;

}

Fourth, all local variables have to be “literal types:”

constexpr void Foo()

{

 // Compiler error: constexpr function can't have non-

literal variables

 NonLiteral nl{};

}

Fifth, the function can’t have any static variables:

constexpr int32_t GetNextInt()

{

 // Compiler error: constexpr functions can't have

static variables

 static int32_t next = 0;

 return ++next;

}

Any function that follows all these rules is free to be constexpr or
consteval.

Constant If

Since C++17, a new form of if is available: if constexpr (...).
These are evaluated at compile time regardless of whether they’re in
a constexpr function or not. The compiler then removes the if in
favor of either the code in the if block or the else block. They’re
very useful for removing code from the executable to reduce its size
and to remove the cost of branch instructions at runtime.

For example, say we want to set the minimum severity level that is
logged at compile time and not have to check it every time a log
message is written. We could use a compiler-defined preprocessor
symbol (LOG_LEVEL), a constexpr string equality function
(IsStrEqual), and if constexpr to either log or not log:

// The compiler sets a preprocessor symbol based on its

configuration

// It's like we wrote this into the C++ code:

#define LOG_LEVEL "WARN"

// Constant function that compares NUL-terminated strings

for exact equality

constexpr bool IsStrEqual(const char* str, const char*

match)

{

 for (int i = 0; ; ++i)

 {

 char s = str[i];

 char m = match[i];

 if (s)

 {

 if (m)

 {

 if (s != m)

 {

 return false;

 }

 }

 else

 {

 return false;

 }

 }

 else

 {

 return !m;

 }

 }

 return true;

}

// Logs debug messages if LOG_LEVEL is DEBUG

void LogDebug(const char* msg)

{

 // Compare LOG_LEVEL to "DEBUG" at compile time

 // If false, the WriteLog call is removed from the

executable

 if constexpr (IsStrEqual(LOG_LEVEL, "DEBUG"))

 {

 WriteLog("DEBUG", msg);

 }

}

// Logs warning messages if LOG_LEVEL is DEBUG or WARN

void LogWarn(const char* msg)

{

 // Compare LOG_LEVEL to "DEBUG" and "WARN" at compile

time

 // If false, the WriteLog call is removed from the

executable

 if constexpr (IsStrEqual(LOG_LEVEL, "DEBUG") ||

 IsStrEqual(LOG_LEVEL, "WARN"))

 {

 WriteLog("WARN", msg);

 }

}

// Logs warning messages if LOG_LEVEL is DEBUG, WARN, or

ERROR

void LogError(const char* msg)

{

 // Compare LOG_LEVEL to "DEBUG", "WARN", and "ERROR"

at compile time

 // If false, the WriteLog call is removed from the

executable

 if constexpr (IsStrEqual(LOG_LEVEL, "DEBUG") ||

 IsStrEqual(LOG_LEVEL, "WARN") ||

 IsStrEqual(LOG_LEVEL, "ERROR"))

 {

 WriteLog("ERROR", msg);

 }

}

Static Assertions

Similar to if constexpr, we can write assertions that execute at
compile time rather than run time. For example, we could
static_assert to make sure the LOG_LEVEL was set to a valid value.
If it’s not the code won’t compile:

static_assert(IsStrEqual(LOG_LEVEL, "DEBUG") ||

 IsStrEqual(LOG_LEVEL, "WARN") ||

 IsStrEqual(LOG_LEVEL, "ERROR"),

 "Invalid log level: " LOG_LEVEL);

We could also check to make sure the code is being compiled in a
supported build environment:

static_assert(MSC_VER >= 1900, "Only Visual Studio 2015+

is supported");

static_assert(_WIN64, "Only 64-bit Windows is

supported");

Or, as is more traditional for assertions, we could make sure that we
didn’t make a mistake in our code. For example, it’s common to
define a struct that’s serialized and deserialized when reading from
or writing to files or network sockets. We can use static_assert to
make sure it’s the right size and we haven’t inadvertently increased it
by adding data members or padding:

struct PlayerUpdatePacket

{

 int32_t PlayerId;

 float PositionX;

 float PositionY;

 float PositionZ;

 float VelocityX;

 float VelocityY;

 float VelocityZ;

 int32_t NumLives;

};

static_assert(

 sizeof(PlayerUpdatePacket) == 32,

 "PlayerUpdatePacket serializes to wrong size");

Since C++17, we can omit the error message if we don’t think it’s
helpful:

static_assert(sizeof(PlayerUpdatePacket) == 32);

Constant Expressions

Now that we have a wealth of compile-time features in constexpr
variables, constexpr functions, if constexpr, and static_assert,
we need to know when we’re allowed to use these and when we’re
not. Clearly literals like 32 are constant expressions and calls to
rand() to get a random number are not, but many cases are not so
clear-cut.

C++ qualifies an expression as constant as long as it doesn’t match
any of a list of criteria. Since C++11, each version of the language
has relaxed these restrictions. The language is broadly moving
toward being entirely executable at compile time. Until then, we need
to know what’s not allowed in a compile-time expression so we know
what we can’t use with all these compile-time features. Let’s go
through the rules as of C++20.

First, the this pointer can’t be used, implicitly or explicitly, outside of
constexpr member functions and constexpr constructors:

struct Test

{

 int32_t Val{123};

 int32_t GetVal()

 {

 // Explicitly use the this pointer

 // Compiler error: can't use `this` outside of

constexpr member function

 constexpr int32_t val = this->Val;

 return val;

 }

};

The same goes for lambdas referencing captured objects, since they
are effectively accessed via the this pointer to the lambda class:

const int32_t outside = 123;

auto lambda = [outside]

{

 // Compiler error: can't reference variables outside

the lambda

 constexpr int32_t const* pOutside = &outside;

 DebugLog(*pOutside);

};

lambda();

Second, calls to non-constexpr functions and constructors aren’t
allowed:

struct Test

{

 int32_t Val{123};

 // User-defined conversion operator to int32_t

 operator int32_t()

 {

 return Val;

 }

};

// Try to make a Test and convert it to an int32_t

// Compiler error: call to Test constructor which isn't

constexpr

constexpr int32_t val = Test{};

Third, we can’t make calls to constexpr functions that are only
declared but not yet defined:

// Declare constexpr function

constexpr int32_t Pow(int32_t x, int32_t y);

// Compiler error: Pow isn't defined yet

constexpr int32_t eight = Pow(2, 3);

// Define constexpr function

constexpr int32_t Pow(int32_t x, int32_t y)

{

 int32_t result = x;

 for (; y > 1; --y)

 {

 result *= x;

 }

 return result;

}

Fourth, calls to constexpr virtual functions of classes that aren’t
“literal types” and whose lifetimes began before the expression:

struct Base

{

 constexpr virtual int32_t GetVal()

 {

 return 1;

 }

};

struct Derived : Base

{

 constexpr virtual int32_t GetVal() override

 {

 return 123;

 }

};

// Class begins lifetime before the constant expression

Derived d{};

// Compiler error: can't call constexpr virtual function

on class that began its

// lifetime before the constant expression

constexpr int32_t val = d.GetVal();

// OK: Derived object begins lifetime during constant

expression

constexpr int32_t val2 = Derived{}.GetVal();

Fifth, triggering any form of undefined behavior. This rule adds a
safety net to constexpr code. Undefined behavior simply won’t
compile.

// Compiler error: dividing by zero is undefined behavior

constexpr float f = 3.14f / 0.0f;

// Compiler error: signed integer overflow is undefined

behavior

constexpr int32_t i = 0x7fffffff + 1;

Sixth, lvalues can’t be used as rvalues if the lvalue isn’t allowed in a
constant expression. For example, a non-const lvalue isn’t allowed
but a const lvalue is:

// i1 can't be used in a constant expression because it's

not const

int32_t i1 = 123;

// i2 can be used in a constant expression because it is

const

const int32_t i2 = 123;

// i3 can't be used in a constant expression because it's

not initialized with

// a constant expression

const int32_t i3 = i1;

// Compiler error: i1 can't be used

constexpr int32_t i4 = i1;

// Compiler error: i3 can't be used

constexpr int32_t i5 = i3;

// OK: i2 can be used

constexpr int32_t i6 = i2;

References are not an allowed workaround since they are just a
synonym for an object:

struct HasVal

{

 int32_t Val{123};

};

HasVal hv{};

constexpr HasVal const& rhv{hv};

constexpr int32_t ri{rhv.Val};

constexpr HasVal hv2{};

constexpr HasVal const& rhv2{hv2};

constexpr int32_t ri2{rhv2.Val};

Seventh, only the active member of a union can be used. Accessing
non-active members is a form of undefined behavior that’s
commonly allowed by compilers in run-time code but disallowed in
compile-time code.

union IntFloat

{

 int32_t Int;

 float Float;

 constexpr IntFloat()

 {

 // Make Int the active member

 Int = 123;

 }

};

// Call constexpr constructor which makes Int active

constexpr IntFloat u{};

// OK: can use Int because it's the active member

constexpr int32_t i = u.Int;

// Compiler error: can't use Float because it's not the

active member

constexpr float f = u.Float;

The compiler-generated copy or move constructor or assignment
operator of a union whose active member is mutable is also
disallowed:

union IntFloat

{

 mutable int32_t Int;

 float Float;

 constexpr IntFloat()

 {

 Int = 123;

 }

};

constexpr IntFloat u{};

constexpr IntFloat u2{u};

Eighth, converting from void* to any other pointer type:

constexpr int32_t i = 123;

constexpr void const* pv = &i;

// Compiler error: constant expressions can't convert

void*

constexpr int32_t const* pi = static_cast<int32_t const*>

(pv);

Ninth, any use of reinterpret_cast:

constexpr int32_t i = 123;

// Compiler error: constant expressions can't use

reinterpret_cast even to cast

// to the same type

constexpr int32_t i2 = reinterpret_cast<int32_t>(i);

Tenth, modifying an object that’s not a literal type whose lifetime
began within the constant expression:

constexpr int Foo(int val)

{

 // val begins its liftime here, before the constant

expression starts

 // Compiler error: constant expression can't modify

object whose lifetime

 // started before

 constexpr int ret = ++val;

 return ret;

}

Eleventh, new and delete unless the allocated memory is deleted by
the constant expression:

// Compiler error: memory allocated by `new` not deleted

in constant expression

constexpr int32_t* pi = new int;

constexpr int32_t GetInt()

{

 int32_t* p = new int32_t;

 *p = 123;

 int32_t ret = *p;

 delete p;

 return ret;

}

// OK: GetInt() call deletes memory it allocated with the

new operator

constexpr int32_t i = GetInt();

Twelfth, comparing pointers is technically “unspecified behavior” and
not allowed in a constant expression:

int32_t i = 123;

int32_t* pi1 = &i;

int32_t* pi2 = &i;

// Compiler error: can't compare pointers in a constant

expression

constexpr bool b = pi1 < pi2;

Thirteenth, while we can catch exceptions, we can’t throw them:

constexpr void Explode()

{

 // Compiler error: can't throw in a constant

expression

 throw "boom";

}

dynamic_cast and typeid are also not allowed to throw an exception:

struct Combatant

{

 virtual int32_t GetMaxHealth() = 0;

};

struct Enemy : Combatant

{

 virtual int32_t GetMaxHealth() override

 {

 return 100;

 }

};

struct TutorialEnemy : Combatant

{

 virtual int32_t GetMaxHealth() override

 {

 return 10;

 }

};

Enemy e;

Combatant& c{e};

// Compiler error: can't call dynamic_cast in a constant

expression if it

// will throw an exception

constexpr TutorialEnemy& te{dynamic_cast<TutorialEnemy&>

(c)};

Enemy* p = nullptr;

// Compiler error: can't call typeid in a constant

expression if it will

// throw an exception

constexpr auto name = typeid(p).name();

Fourteenth, and finally, variadic functions using va_start, va_arg,
and va_end which are generally not recommended to be used
anyways:

constexpr void DebugLogAll(int count, ...)

{

 va_list args;

 // Compiler error: can't use va_start in constant

expressions

 va_start(args, count);

 for (int i = 0; i < count; ++i)

 {

 const char* msg = va_arg(args, const char*);

 DebugLog(msg);

 }

 va_end(args);

}

Conclusion

C++ provides a powerful set of compile-time programming options
with constexpr variables, constexpr functions, constexpr if, and
static_assert. Each new version of the language makes more and
more of the regular, run-time features available at compile time.
While there are still quite a few restrictions, many of them are for
esoteric features like variadic functions or to explicitly prevent bugs
such as by forbidding undefined behavior.

The general direction of the language is to eventually be fully
available at compile time so there’s no need to use another language
or write another program to generate source code. The result is a
uniform build process and the de-duplication of compile-time and
run-time code. By simply adding the constexpr keyword, we can
often move run-time calculations to compile time and increase run-
time performance by using those pre-computed results.

In contrast, C# support for compile-time programming is limited to
using built-in operators on primitives and string in const and default
function arguments. These have been available since the first
version (in 2002) and no more features have been added or
announced since then. Compile-time programming is virtually always
done by an external tool and build step that generates .cs or .dll
files. This seems to represent a philosophical difference between the
two languages.

https://jacksondunstan.com/articles/tag/code-generation

24. Preprocessor

Conditionals

Just like in C#, the C++ preprocessor runs at an early stage of
compilation. This is after the bytes of the file are interpreted as
characters and comments are removed, but before the main
compilation of language concepts like variables and functions. The
preprocessor therefore has a very limited understanding of the
source code.

It takes this limited understanding of the source code and makes
textual substitutions to it. When it’s done, the resulting source code
is compiled.

One common use of this in C# are the conditional “directives:” #if,
#else, #elif, and #endif. These allow branching logic to take place
during the preprocessing step of compilation. C# allows for logic on
boolean preprocessor symbols:

// C#

static void Assert(bool condition)

{

 #if DEBUG && (ASSERTIONS_ENABLED == true)

 if (!condition)

 {

 throw new Exception("Assertion failed");

 }

 #endif

}

If the #if expression evaluates to false then the code between the
#if and #endif is removed:

// C#

static void Assert(bool condition)

{

}

This helps us reduce the size of the generated executable and
improve run-time performance by removing instructions and memory
accesses.

One common mistake is to assume the preprocessor understands
more about the structure of the source code than it really does. For
example, we might assume that it understands what identifiers are:

// C#

void Foo()

{

 #if Foo

 DebugLog("Foo exists");

 #else

 DebugLog("Foo does not exist"); // Gets printed

 #endif

}

C++ has similar support for preprocessor conditionals. They’re even
named #if, #else, #elif, and #endif. The above C# examples are
actually valid C++!

The two languages differ in a few minor ways. First, #if ABC in C++
checks the value of ABC, not just whether it’s defined.

// Assume the value of ZERO is 0

#if ZERO

 DebugLog("zero");

#else

 DebugLog("non-zero"); // Gets printed

#endif

There are a couple ways to avoid this. First, we can use the
preprocessor defined operator to check whether the symbol is
defined instead of checking its value:

#if defined(ZERO) // evaluates to 1, which is true

 DebugLog("zero"); // Gets printed

#else

 DebugLog("non-zero");

#endif

// Alternate version without parentheses

#if defined ZERO // evaluates to 1, which is true

 DebugLog("zero"); // Gets printed

#else

 DebugLog("non-zero");

#endif

The other way is to use #ifdef and #ifndef instead of of #if:

#ifdef ZERO // ZERO is defined. Its value is irrelevant.

 DebugLog("zero"); // Gets printed

#else

 DebugLog("non-zero");

#endif

#ifndef ZERO // Check if NOT defined

 DebugLog("zero");

#else

 DebugLog("non-zero"); // Gets printed

#endif

These checks are commonly used to implement header guards.
Since C++17, they can also be used with __has_include which
evaluates to 1 if a header exists and 0 if it doesn’t. This is often used
to check whether optional libraries are available or to choose from
one of several equivalent libraries:

// If the system provides DebugLog via the debug_log.h

header

#if __has_include(<debug_log.h>)

 // Use the system-provided DebugLog

 #include <debug_log.h>

// The system does not provide DebugLog

#else

 // Define our own version using puts from the C

Standard Library

 #include <cstdio>

 void DebugLog(const char* message)

 {

 puts(message);

 }

#endif

This __has_include(<header_name>) check uses the same header
file search that #include <header_name> would. To check the header
file search of #include "header_name", we can use
__has_include("header_name").

Macros

Both languages allow defining preprocessor symbols with #define
and un-defining them with #undef:

// Define a preprocessor symbol

#define ENABLE_LOGGING

void LogError(const char* message)

{

 // Check if the preprocessing symbol is defined

 // It is, so the DebugLog remains

 #ifdef ENABLE_LOGGING

 DebugLog("ERROR", message);

 #endif

}

// Un-define the preprocessor symbol

#undef ENABLE_LOGGING

void LogTrace(const char* message)

{

 // Check if the preprocessing symbol is defined

 // It isn't, so the DebugLog is removed

 #ifdef ENABLE_LOGGING

 DebugLog("TRACE", message);

 #endif

}

void Foo()

{

 LogError("whoops"); // Prints "ERROR whoops"

 LogTrace("got here"); // Nothing printed

}

C# requires #define and #undef to appear only at the top of the file,
but C++ allows them anywhere.

C++ also goes way beyond these simple preprocessor symbol
definitions. It has a full “macro” system that allows for textual
substitution. While this is generally discouraged in “Modern C++,” its
use is still ubiquitous for certain tasks. Sometimes it’s used when the
language doesn’t provide a viable alternative or at least didn’t when
the code was written. Regardless, macros are widely used and it’s
important to know how they work.

First, we can define an “object-like” macro by providing a value to the
preprocessor symbol. Unlike C#, the value doesn’t have to be a
boolean:

// Define an object-like macros

#define LOG_LEVEL 1

#define LOG_LEVEL_ERROR 3

#define LOG_LEVEL_WARNING 2

#define LOG_LEVEL_DEBUG 1

void LogWarning(const char* message)

{

 // The preprocessor symbol can be used in #if

expressions

 #if LOG_LEVEL <= LOG_LEVEL_WARNING

 // The preprocessor symbol will be replaced with

its value

 DebugLog(LOG_LEVEL_WARNING, message);

 // After preprocessing, the previous line

becomes:

 DebugLog(2, message);

 #endif

}

We can also define “function-like” macros that take parameters:

// Define a function-like macro

#define MADD(x, y, z) x*y + z

void Foo()

{

 int32_t x = 2;

 int32_t y = 3;

 int32_t z = 4;

 // Call the function-like macro

 int32_t result = MADD(x, y, z);

 // After preprocessing, the previous line becomes:

 int32_t result = x*y + z;

 DebugLog(result); // 10

}

Unlike a runtime function call, calling a function-like macro simply
performs textual substitution. It’s easy to forget this, especially when
the macro is named like a normal function. This can lead to bugs and
performance problems because argument expressions aren’t
evaluated before the macro is called:

// Function-like macro named like a normal function, not

ALL_CAPS

#define square(x) x*x

int32_t SumOfRandomNumbers(int32_t n)

{

 int32_t sum = 0;

 for (int32_t i = 0; i < n; ++i)

 {

 sum += rand();

 }

 return sum;

}

void Foo()

{

 // Call a very expensive function

 int32_t result = square(SumOfRandomNumbers(1000000));

 // After preprocessing, the previous line becomes:

 int32_t result =

SumOfRandomNumbers(1000000)*SumOfRandomNumbers(1000000);

 DebugLog(result); // {some random number}

}

With a normal function call, SumOfRandomNumbers(1000000) would be
evaluated before the function is called. With macros, it’s just textually
replaced so square ends up making two calls to it. The call is very
expensive, so we have a performance problem. It’s also a bug
because we’re no longer necessarily multiplying the same number
by itself since the two calls may return different numbers.

To see more clearly how bugs arise, consider this macro call:

void Foo()

{

 int32_t i = 1;

 int32_t result = square(++i);

 // After preprocessing, the previous line becomes:

 int32_t result = ++i*++i;

 DebugLog(result, i); // 6, 3

}

Again, the argument (++i) isn’t evaluated before the macro call but
rather just repeated every time the macro refers to the parameter.
This means i is incremented from 1 to 2 then again to 3 before the

multiplication (*) produces the result of 2*3=6 and sets i to 3. If this
were a function call, we’d expect 2*2=4 and for the value of i to be 2
afterward. These potential bugs are one reason why macros are
discouraged.

Function-like macros have access to a couple of special operators: #
and ##. The # operator wraps an argument in quotes to create a
string literal:

// Wrap msg in quotes to create "msg"

#define LOG_TIMESTAMPED(msg) DebugLog(GetTimestamp(),

#msg);

void Foo()

{

 // No need for quotes. hello becomes "hello".

 LOG_TIMESTAMPED(hello) // {timestamp} hello

 // Extra quotes are added and existing quotes are

escaped: ""hello""

 LOG_TIMESTAMPED("hello") // {timestamp} "hello"

}

The ## operator is used to concatenate two symbols, which may be
arguments:

// Each line concatenates some literal text (e.g. m_)

with the value of name

// Backslashes are used to make a multi-line macro

#define PROP(type, name) \

 private: type m_##name; \

 public: type Get##name() const { return m_##name; } \

 public: void Set##name(const type & val) { m_##name =

val; }

struct Vector2

{

 PROP(float, X)

 PROP(float, Y)

 // These macro calls are replaced with:

 private: float m_X;

 public: float GetX() const { return m_X; }

 public: void SetX(const float & val) { m_X = val; }

 private: float m_Y;

 public: float GetY() const { return m_Y; }

 public: void SetY(const float & val) { m_Y = val; }

};

void Foo()

{

 Vector2 vec;

 vec.SetX(2);

 vec.SetY(4);

 DebugLog(vec.GetX(), vec.GetY()); // 2, 4

}

Macros may also take a variable number of parameters using ...
similar to functions. __VA_ARGS__ is used to access the arguments:

#define LOG_TIMESTAMPED(level, ...) DebugLog(level,

GetTimestamp(), __VA_ARGS__);

void Foo()

{

 LOG_TIMESTAMPED("DEBUG", "hello", "world") // DEBUG

{timestamp} hello world

 // This macro call is replaced by:

 DebugLog("DEBUG", GetTimestamp(), "hello", "world");

}

In C++20, __VA_OPT__(x) is also available. If __VA_ARGS__ is empty,
it’s replaced by nothing. If __VA_ARGS__ isn’t empty, it’s replaced by x.
This can be used to make parameters in macros like
LOG_TIMESTAMPED optional:

// __VA_OPT__(,) adds a comma only if __VA_ARGS__ isn't

empty, meaning the

// caller passed some log messages

#define LOG_TIMESTAMPED(...) DebugLog(GetTimestamp()

__VA_OPT__(,) __VA_ARGS__);

void Foo()

{

 LOG_TIMESTAMPED() // {timestamp}

 LOG_TIMESTAMPED("hello", "world") // {timestamp}

hello world

 // These macro calls are replaced by:

 DebugLog(GetTimestamp());

 DebugLog(GetTimestamp() , "hello", "world");

}

Without __VA_OPT__, we wouldn’t know if the macro should put a , or
not because we wouldn’t know if there are any arguments to pass
after it.

Built-in Macros and Feature-Testing

Just like how C# pre-defines the DEBUG and TRACE preprocessor
symbols, C++ pre-defines some object-like macros:

Name Value Meaning

__cplusplus

199711L
(C++98 and
C++03)
201103L
(C++11)
201402L
(C++14)
201703L
(C++17)
202002L
(C++20)

C++
language
version

__STDC_HOSTED__
1 if there is
an OS, 0 if
not

__FILE__ "mycode.cpp"
Name of the
current file

__LINE__ 38
Current line
number

__DATE__ "2020 10 26"
Date the
code was
compiled

__TIME__ "02:00:00"
Time the
code was
compiled

Name Value Meaning

__STDCPP_DEFAULT_NEW_ALIGNMENT__ 8

Default
alignment of
new. Only in
C++17 and
up.

Since C++20, there are a ton of "feature test" macros available in the
<version> header file. These are all object-like and their values are
the date that the language or Standard Library feature was added to
C++. The intention is to compare them to __cplusplus to determine
whether the feature is supported or not. There are way too many to
list here, but the following shows a couple in action:

void Foo()

{

 if (__cplusplus >= __cpp_char8_t)

 {

 DebugLog("char8_t is supported in the language");

 }

 else

 {

 DebugLog("char8_t is NOT supported in the

language");

 }

 if (__cplusplus >= __cpp_lib_byte)

 {

 DebugLog("std::byte is supported in the Standard

Library");

 }

 else

 {

 DebugLog("std::byte is NOT supported in the

Standard Library");

 }

}

A complete list is available in the C++ Standard's definition of the
<version> header file.

https://eel.is/c++draft/version.syn#header:%3cversion%3e

Miscellaneous Directives

The pre-defined __FILE__ and __LINE__ values can be overridden by
another preprocessor directive: #line. This works just like in C#
except that default and hidden aren't allowed:

void Foo()

{

 DebugLog(__FILE__, __LINE__); // main.cpp, 38

#line 100

 DebugLog(__FILE__, __LINE__); // main.cpp, 100

#line 200 "custom.cpp"

 DebugLog(__FILE__, __LINE__); // custom.cpp, 200

}

#error can be used to make the compiler produce an error:

#ifndef _MSC_VER

 #error Only Visual Studio is supported

#endif

#pragma is used to allow compilers to provide their own preprocessor
directives, just like in C#:

// mathutils.h

// Compiler-specific alternative to header guards

#pragma once

float SqrMagnitude(const Vector2& vec)

{

 return vec.X*vec.X + vec.Y*vec.Y;

}

_Pragma("expr") can be used instead of #pragma expr. It has exactly
the same effect:

_Pragma("once")

C#'s #region and #endregion aren't supported in C++, but compilers
like Visual Studio allow it via #pragma:

#pragma region Math

float SqrMagnitude(const Vector2& vec);

float Dot(const Vector2& a, const Vector2& b);

#pragma endregion Math

Usage and Alternatives

Each new version of C++ makes usage of the preprocessor less
necessary. For example, C++11 introduced constexpr variables
which removed a lot of the reasons to use object-like macros:

// Before C++11

#define PI 3.14f

// After C++11

constexpr float PI = 3.14f;

This made PI an actual object so it has a type (float), its address
can be taken (&PI), and just generally used like other objects rather
than as a textually-replaced float literal. The benefits become much
greater with struct types, lambda classes, and other non-primitives
where it's not really possible to make a macro for general use:

// Before C++11

// This isn't usable in many contexts like

Foo(EXPONENTIAL_BACKOFF_TIMES)

#define EXPONENTIAL_BACKOFF_TIMES { 1000, 2000, 4000,

8000, 16000 }

// After C++11

// This works like any array object:

constexpr int32_t ExponentialBackoffTimes[] = { 1000,

2000, 4000, 8000, 16000 };

Likewise, constexpr and consteval functions have removed a lot of
the need for function-like macros:

constexpr int32_t Square(int32_t x)

{

 return x * x;

}

void Foo()

{

 int32_t i = 1;

 int32_t result = Square(++i);

 DebugLog(result); // 4

}

These behave like regular functions rather than textual substitution.
We skip all the bugs and performance problems that macros might
cause but keep the compile-time evaluation. We can even force
compile-time evaluation in C++20 with consteval. We get strong
typing, so Square("FOO") is an error. We can use the function at run-
time, not just compile time. It behaves like any other function: we can
take function pointers, we can create member functions, and so
forth.

Still, macros provide a sort of escape hatch for when we simply can't
express something without raw textual substitution. The PROP macro
example above generates members with access specifiers. There's
no way to do that otherwise. That example might not be the best
idea, but others really are. A classic example is an assertion macro:

// When assertions are enabled, define ASSERT as a macro

that tests a boolean

// and logs and terminates the program when it's false.

#ifdef ENABLE_ASSERTS

 #define ASSERT(x) \

 if (!(x)) \

 { \

 DebugLog("assertion failed"); \

 std::terminate(); \

 }

// When assertions are disabled, assert does nothing

#else

 #define ASSERT(x)

#endif

bool IsSorted(const float* vals, int32_t length)

{

 for (int32_t i = 1; i < length; ++i)

 {

 if (vals[i] < vals[i-1])

 {

 return false;

 }

 }

 return true;

}

float GetMedian(const float* vals, int32_t length)

{

 ASSERT(vals != nullptr);

 ASSERT(length > 0);

 ASSERT(IsSorted(vals, length));

 if ((length & 1) == 1)

 {

 return vals[length / 2]; // odd

 }

 float a = vals[length / 2 - 1];

 float b = vals[length / 2];

 return (a + b) / 2;

}

void Foo()

{

 float oddVals[] = { 1, 3, 3, 6, 7, 8, 9 };

 DebugLog(GetMedian(oddVals, 7));

 float evenVals[] = { 1, 2, 3, 4, 5, 6, 8, 9 };

 DebugLog(GetMedian(evenVals, 8));

 DebugLog(GetMedian(nullptr, 1));

 float emptyVals[] = {};

 DebugLog(GetMedian(emptyVals, 0));

 float notSortedVals[] = { 3, 2, 1 };

 DebugLog(GetMedian(notSortedVals, 3));

}

Calling ASSERT with assertions enabled performs the following
replacement:

ASSERT(IsSorted(vals, length));

// Becomes:

if (!(IsSorted(vals, length)))

{

 DebugLog("assertion failed");

 std::terminate();

}

When disabled, everything's removed including the expressions
passed as arguments:

ASSERT(IsSorted(vals, length));

// Becomes:

Now imagine we had used a constexpr function instead of a macro:

#ifdef ENABLE_ASSERTS

 constexpr void ASSERT(bool x)

 {

 if (!x)

 {

 DebugLog("assertion failed");

 std::terminate();

 }

 }

#else

 constexpr void ASSERT(bool x)

 {

 }

#endif

When assertions are disabled, we get the empty constexpr function:

constexpr void ASSERT(bool x)

{

}

But when we call ASSERT the arguments still need to be evaluated
even though the function itself does nothing:

ASSERT(IsSorted(vals, length));

// Is equivalent to:

bool x = IsSorted(vals, length);

Assert(x); // does nothing

The compiler might be able to determine that the call to IsSorted
has no side effects and can be safely removed. In many cases, it
won't be able to make this determination and an expensive call to
IsSorted will still take place. We don't want this to happen, so we
use a macro.

Macros can also be used to implement a primitive form of C#
generics or C++ templates, which we'll cover soon in the book:

// "Generic"/"template" of a Vector2 class

#define DEFINE_VECTOR2(name, type) \

 struct name \

 { \

 type X; \

 type Y; \

 };

// Invoke the macro to generate Vector2 classes

DEFINE_VECTOR2(Vector2f, float);

DEFINE_VECTOR2(Vector2d, double);

// "Generic"/"template" of a function

#define DEFINE_MADD(type) \

 type Madd(type x, type y, type z) \

 { \

 return x*y + z; \

 }

// Invoke the macro to generate Madd functions

DEFINE_MADD(float);

DEFINE_MADD(int32_t);

void Foo()

{

 // Use the generated Vector2 classes

 // Use sizeof to show that they have different

component sizes

 Vector2f v2f{2, 4};

 DebugLog(sizeof(v2f), v2f.X, v2f.Y); // 8, 2, 4

 Vector2d v2d{20, 40};

 DebugLog(sizeof(v2d), v2d.X, v2d.Y); // 16, 20, 40

 // Use the generated Madd functions

 // Use typeid on the return value to show that

they're overloads

 float xf{2}, yf{3}, zf{4};

 auto maddf{Madd(xf, yf, zf)};

 DebugLog(typeid(maddf) == typeid(float)); // true

 DebugLog(typeid(maddf) == typeid(int32_t)); // false

 int32_t xi{2}, yi{3}, zi{4};

 auto maddi{Madd(xi, yi, zi)};

 DebugLog(typeid(maddi) == typeid(float)); // false

 DebugLog(typeid(maddi) == typeid(int32_t)); // true

}

This form of code generation is commonly used in C codebases that
lack C++ templates. When templates are available, as they are in all
versions of C++, they are the preferred option for many reasons.
One reason is the ability to "overload" a class name so we just have
Vector2 rather than coming up with awkward unique names like
Vector2f and Vector2d.

Another is that there's no need for, usually large, lists of DEFINE_X
macro calls for every permutation of types needed in every class and
function. This really gets out of control when there are several "type
parameters." Instead, the compiler generates all the permutations of
the class or function based on our usage of them so we don't need
to explicitly maintain such lists.

There are many more reasons that we'll get into when we cover
templates later in the book.

Conclusion

The two languages have a lot of overlap in their use of the
preprocessor. It runs at the same stage of compilation and features
many identically-named directives with the same functionality.

The major points of divergence are in #include, an essential part of
the build model before C++20, and in macros created by #define.
Function-like macros represent another form of compile-time
programming that runs during preprocessing as opposed to
constexpr which runs during main compilation. They're also another
form of generics or templates. While their necessity has diminished
over time, they are still essential for some tasks and convenient for
others.

25. Intro to Templates

What are Templates?

Templates really are what their name suggests: a template for
something. When we speak of a template, we say it’s a “something
template” not a “template something.” This may sound like a trivial
difference, and it’s even a commonly-heard misnomer, but there’s
actually an important distinction to be made.

Say we’re talking about functions. If we say “template function” then
we use “template” as an adjective, as though that’s what kind of
function it is. This is how we properly talk about “static functions” and
“member functions” or even “static member functions.” Those are all
adjectives that clarify what kind of function we’re talking about.

This is not the case with templates. We never write a “template
function” but instead a “template for a function.” This is then
shortened to just “function template.” The template can be used to
make a function which is then usable like any other function. This
process is known as “instantiation.” That’s the same term we use
when we make an object of a class type: the object is an instance of
the class.

Template instantiation always takes place at compile time. We may
pass arguments to the template in order to control how the template
is instantiated into a run-time entity. This is conceptually similar to
calling a constructor.

C++’s approach with templates differs from C#’s approach with
generics. Rather than instantiating templates at compile time, the C#
compiler generates MSIL that describes generic types and methods.
The runtime then instantiates generics at the point where they’re first
used. The generic is instantiated for each primitive (int, float, etc.)
and once for all reference types (string, GameObject, etc.). Run-time

implementations of this differ greatly. For example, IL2CPP
instantiates generics at compile time but Microsoft runtimes
instantiate them at run time.

With this in mind, let’s start looking at the kinds of templates we can
make.

https://jacksondunstan.com/articles/4545
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/generics/generics-in-the-run-time

Variables

Perhaps the simplest form of template is a template for a variable.
Consider the case of defining π:

constexpr float PI_FLOAT = 3.14f;

constexpr double PI_DOUBLE = 3.14;

constexpr int32_t PI_INT32 = 3;

This requires us to create many variables, each with essentially the
same value. We have to come up with unique names for them which
adds a lot of noise to our code.

Now let’s look at how we’d do this with a variable template:

template<typename T>

constexpr T PI = 3.14;

First, we start with the template keyword and the “template
parameters” in angle brackets: <typename T>. We’ll go in-depth into
the various options for template parameters in the next chapter. For
now, we’ll use the simple typename T. This says the template takes
one parameter, a “type name” with the name T. This is just like
parameters to functions. We state the type of the required
parameters and what we want to refer to them as in the function: int
i.

After the template we have the thing that the template creates when
instantiated. In this case we have a variable named PI. It has access
to the template parameters, which in this case is just T. Here we use
T as the type of the variable: T PI. Just like other variables, we’re

free to make it constexpr and initialize it: = 3.14. We could also
make it a pointer, a reference, const, or use other forms of
initialization like {3.14}.

Now that we’ve defined a template of a variable, let’s instantiate it so
we have an actual variable:

float pi = PI<float>;

DebugLog(pi); // 3.14

Instantiation involves naming the template (PI) and providing
arguments for the required template parameters. This is just like
calling a function except that we’re using angle brackets (<>) instead
of parentheses (()). We’re also passing a type name (float) instead
of an object (3.14).

When the compiler sees this, it looks at the template (PI) and
matches up our template arguments (float) to the template
parameters (T). It then substitutes the arguments wherever they’re
used in the templated entity. In this case T is replaced with float, so
we get this:

constexpr float PI = 3.14;

Then our usage of the template is replaced with usage of the
instantiated template, so we get this:

float pi = PI;

DebugLog(pi); // 3.14

Looking back at the original example where we had double and
int32_t versions of π, we can now replace those with uses of the PI
template:

float pif = PI<float>;

DebugLog(pif); // 3.14

double pid = PI<double>;

DebugLog(pid); // 3.14

int32_t pii = PI<int32_t>;

DebugLog(pii); // 3

This example instantiates the PI variable template three times. The
first instantiation passes float as the argument for T and the second
and third instantiations pass double and int32_t. This causes the
compiler to generate three variables:

constexpr float PI = 3.14;

constexpr double PI = 3.14;

constexpr int32_t PI = 3.14;

There are two apparent problems here. First, we’re initializing an
int32_t with = 3.14. This is fine since 3.14 will be truncated to 3 per
the initialization rules. If we didn’t want that behavior, we could have
used constexpr T PI{3.14} and PI<int32_t> would then cause a
compiler error as int32_t{3.14} is not allowed.

Second, we apparently have three variables named PI and therefore
have a naming conflict. The compiler steps in and generates unique

names. It may call them PI_FLOAT, PI_DOUBLE, and PI_INT32 or any
other names it deems appropriate so long as they’re unique.

This is the same process that occurs when we overload functions:
the compiler generates unique names for those functions. When we
refer to the function, such as by calling it, the compiler determines
which one we’re calling and substitutes Foo() with Foo_Void() or
whatever it named the function. With templates, the compiler
substitutes PI<float> with PI_FLOAT.

Lastly, we can explicitly instantiate a variable template without using
it for any particular purpose:

template constexpr float PI<float>;

This is commonly used in libraries that don’t need to use the
template but rather want to make sure it’s compiled into a static or
dynamic library so it’s available for users at link time.

Functions

Function templates can be instantiated to produce a function just like
how variable templates can be instantiated to produce a variable.
For example, here’s a template for functions that return the
maximum of two arguments:

// Function template

template<typename T>

T Max(T a, T b)

{

 return a > b ? a : b;

}

// int version

int maxi = Max<int>(2, 4);

DebugLog(maxi); // 4

// float version

float maxf = Max<float>(2.2f, 4.4f);

DebugLog(maxf); // 4.4

// double version

double maxd = Max<double>(2.2, 4.4);

DebugLog(maxd); // 4.4

Again we see the template<typename T> that begins a template.
After it we wrote a function instead of a variable. That function has

access to the type name argument T. It uses it as the type of the two
parameters as well as the return value.

Then we see three instantiations of the Max template: Max<int>,
Max<float>, and Max<double>. Just like with variables, the compiler
instantiates three functions by substituting the template argument
(int, float, or double) anywhere the template parameter T is used in
the function template:

int MaxInt(int a, int b)

{

 return a > b ? a : b;

}

float MaxFloat(float a, float b)

{

 return a > b ? a : b;

}

double MaxDouble(double a, double b)

{

 return a > b ? a : b;

}

Then the three function calls that caused this instantiation are
replaced by calls to the instantiated functions:

// int version

int maxi = MaxInt(2, 4);

DebugLog(maxi); // 4

// float version

float maxf = MaxFloat(2.2f, 4.4f);

DebugLog(maxf); // 4.4

// double version

double maxd = MaxDouble(2.2, 4.4);

DebugLog(maxd); // 4.4

Also, as with any template, we’re not limited to just primitive types.
We can use any type:

struct Vector2

{

 float X;

 float Y;

 bool operator>(const Vector2& other) const

 {

 return X > other.X && Y > other.Y;

 }

};

// Vector2 version

Vector2 maxv = Max<Vector2>(Vector2{4, 6}, Vector2{2,

4});

DebugLog(maxv.X, maxv.Y); // 4, 6

The implication here is that a template places prerequisites on its
parameters. The Max template requires that there’s a T > T operator
available. That’s definitely satisfied by int, float, and double, but
we needed to write an overloaded Vector2 > Vector2 operator in
order for it to work with Vector2. Without this operator, we’d get a
compiler error:

struct Vector2

{

 float X;

 float Y;

};

template <typename T>

T Max(T a, T b)

{

 // Compiler error:

 // "Invalid operands to binary expression (Vector2

and Vector2)"

 return a > b ? a : b;

}

Vector2 maxv = Max<Vector2>(Vector2{4, 6}, Vector2{2,

4});

DebugLog(maxv.X, maxv.Y); // 4, 6

Another option, as we’ve seen before, available to us in C++20 is to
implicitly create function templates using auto parameters, auto

return types, or both. These are known as “abbreviated function
templates:”

// Abbreviated function template

auto Max(auto a, auto b)

{

 return a > b ? a : b;

}

// Usage is identical

Vector2 maxv = Max<Vector2>(Vector2{4, 6}, Vector2{2,

4});

DebugLog(maxv.X, maxv.Y); // 4, 6

Finally, function templates can be explicitly instantiated like this:

template bool IsOrthogonal<Vector2>(Vector2, Vector2);

Classes

The next kind of template we can create is a template for a class,
struct, or union. As with variables and functions, we start with
template<params> and then write a class:

template<typename T>

struct Vector2

{

 T X;

 T Y;

 T Dot(const Vector2<T>& other) const

 {

 return X*other.X + Y*other.Y;

 }

};

Notice how the class uses the template argument T in place of
specific types like float. This is allowed anywhere a specific type
would otherwise go, such as in the types of data members like X and
Y, the return type of member functions like Dot, or in parameters like
other.

Here’s how we’d instantiate this class template to create vectors of a
few different types:

Vector2<float> v2f{0, 1};

DebugLog(v2f.X, v2f.Y); // 0, 1

DebugLog(v2f.Dot({1, 0})); // 0

Vector2<double> v2d{0, 1};

DebugLog(v2d.X, v2d.Y); // 0, 1

DebugLog(v2d.Dot({1, 0})); // 0

Vector2<int32_t> v2i{0, 1};

DebugLog(v2i.X, v2i.Y); // 0, 1

DebugLog(v2i.Dot({1, 0})); // 0

The compiler-instantiated Vector2 classes then look like this:

struct Vector2Float

{

 float X;

 float Y;

 float Dot(const Vector2Float& other) const

 {

 return X*other.X + Y*other.Y;

 }

};

struct Vector2Double

{

 double X;

 double Y;

 double Dot(const Vector2Double& other) const

 {

 return X*other.X + Y*other.Y;

 }

};

struct Vector2Int32

{

 int32_t X;

 int32_t Y;

 int32_t Dot(const Vector2Int32& other) const

 {

 return X*other.X + Y*other.Y;

 }

};

Then the usages of the class template are replaced with usages of
these instantiated classes:

Vector2Float v2f{0, 1};

DebugLog(v2f.X, v2f.Y); // 0, 1

DebugLog(v2f.Dot({1, 0})); // 0

Vector2Double v2d{0, 1};

DebugLog(v2d.X, v2d.Y); // 0, 1

DebugLog(v2d.Dot({1, 0})); // 0

Vector2Int32 v2i{0, 1};

DebugLog(v2i.X, v2i.Y); // 0, 1

DebugLog(v2i.Dot({1, 0})); // 0

Note that the Dot calls are particularly compact and valid only
because of several rules we’ve seen so far. Take the case of v2f
which is a Vector2<float>. When we call v2f.Dot({1, 0}), the
compiler looks at the Dot it instantiated as part of the Vector2
template. That Dot takes a const Vector2<float>& parameter, so the
compiler interprets {1, 0} as aggregate initialization of a
Vector2<float>. Because {0, 1} doesn’t have a name, that
Vector2<float> is an rvalue. It can be passed to a const lvalue
reference and it’s lifetime is extended until after Dot returns.

Class templates can be explicitly instantiated like this:

template struct Vector2<float>;

template struct Vector2<double>;

template struct Vector2<int32_t>;

Members

Classes can include templates for member functions:

struct Vector2

{

 float X;

 float Y;

 template<typename T>

 bool IsNearlyZero(T threshold) const

 {

 return X < threshold && Y < threshold;

 }

};

Even though Vector2 isn’t a template, it can contain a member
function template. We use it just like a normal member function:

Vector2 vec{0.5f, 0.5f};

// Float

DebugLog(vec.IsNearlyZero(0.6f)); // true

// Double

DebugLog(vec.IsNearlyZero(0.1)); // false

// Int

DebugLog(vec.IsNearlyZero(1)); // true

This causes the compiler to instantiate IsNearlyZero three times:

struct Vector2

{

 float X;

 float Y;

 bool IsNearlyZeroFloat(float threshold) const

 {

 return X < threshold && Y < threshold;

 }

 bool IsNearlyZeroDouble(double threshold) const

 {

 return X < threshold && Y < threshold;

 }

 bool IsNearlyZeroInt(int threshold) const

 {

 return X < threshold && Y < threshold;

 }

};

Then the calls to the member function template are replaced with
calls to the instantiated functions:

Vector2 vec{0.5f, 0.5f};

// Float

DebugLog(vec.IsNearlyZeroFloat(0.6f)); // true

// Double

DebugLog(vec.IsNearlyZeroDouble(0.1)); // false

// Int

DebugLog(vec.IsNearlyZeroInt(1)); // true

We can also write templates for static member variables:

struct HealthRange

{

 template<typename T>

 constexpr static T Min = 0;

 template<typename T>

 constexpr static T Max = 100;

};

They’re used the same way other static member variables are:

float min = HealthRange::Min<float>;

int32_t max = HealthRange::Max<int32_t>;

DebugLog(min, max); // 0, 100

As expected, the compiler instantiates these templates like so:

struct HealthRange

{

 constexpr static float MinFloat = 0;

 constexpr static int32_t MaxInt = 100;

};

And then replaces the member variable template usage with these
instantiated member variables:

float min = HealthRange::MinFloat;

int32_t max = HealthRange::MaxInt;

DebugLog(min, max); // 0, 100

Lastly, we can write templates for member classes:

struct Math

{

 template<typename T>

 struct Vector2

 {

 T X;

 T Y;

 };

};

These can then be used like normal member classes:

Math::Vector2<float> v2f{2, 4};

DebugLog(v2f.X, v2f.Y); // 2, 4

Math::Vector2<double> v2d{2, 4};

DebugLog(v2d.X, v2d.Y); // 2, 4

The compiler then performs the usual instantiation and replacement:

struct Math

{

 struct Vector2Float

 {

 float X;

 float Y;

 };

 struct Vector2Double

 {

 double X;

 double Y;

 };

};

Math::Vector2Float v2f{2, 4};

DebugLog(v2f.X, v2f.Y); // 2, 4

Math::Vector2Double v2d{2, 4};

DebugLog(v2d.X, v2d.Y); // 2, 4

Finally, explicit instantiation of member templates looks like this:

// Member function template

template bool Vector2::IsNearlyZero<float>(float) const;

// Member variable template

template const float HealthRange::Min<float>;

// Member class template

template struct Math::Vector2<float>;

Lambdas

Since lambdas are compiler-generated classes, their overloaded
operator() can also be templated. Prior to C++20, the “abbreviated
function template” syntax based on auto parameters and return
values needed to be used:

// "Abbreviated function template" of LambdaClass'

operator()

auto madd = [](auto x, auto y, auto z) { return x*y + z;

};

// Instantiate with float

DebugLog(madd(2.0f, 3.0f, 4.0f)); // 10

// Instantiate with int

DebugLog(madd(2, 3, 4)); // 10

The compiler-generated lambda class will then look something like
this:

struct Madd

{

 // Abbreviated function template

 auto operator()(auto x, auto y, auto z) const

 {

 return x*y + z;

 }

};

Then the two calls to its operator() cause the abbreviated function
template to be instantiated into an overload set:

struct Madd

{

 float operator()(float x, float y, float z) const

 {

 return x*y + z;

 }

 int operator()(int x, int y, int z) const

 {

 return x*y + z;

 }

};

The compiler will then replace the lambda syntax with instantiation of
these classes and calls to their operator():

Madd madd{};

// Call (float, float, float) overload of operator()

DebugLog(madd(2.0f, 3.0f, 4.0f)); // 10

// Call (int, int, int) overload of operator()

DebugLog(madd(2, 3, 4)); // 10

Starting in C++20, we can use the normal, non-abbreviated, style of
template syntax. The compiler generates exactly the same code with
this version as it did with the “abbreviated” syntax:

// Lambda with explicit template and "trailing return

type"

auto madd = []<typename T>(T x, T y, T z) -> T { return

x*y + z; };

// Instantiate with float

DebugLog(madd(2.0f, 3.0f, 4.0f)); // 10

// Instantiate with int

DebugLog(madd(2, 3, 4)); // 10

Lambdas’ templated operator() can’t be explicitly instantiated.

C# Equivalency

As we’ve seen, C++ has quite a different take on generic
programming than C#. Its templates can be applied not only to
classes, structs, and member functions, but also lambdas, variables,
functions, member variables, and member functions. All of these
except lambdas can be emulated in C# by wrapping them in a
static class:

// C#

public static class Wrapper<T>

{

 // Variable

 public static readonly T Default = default(T);

 // Function

 public static string SafeToString(T obj)

 {

 return object.ReferenceEquals(obj, null) ? "" :

obj.ToString();

 }

}

// Variable

DebugLog(Wrapper<float>.Default); // 0

// Function

DebugLog(Wrapper<Player>.SafeToString(new Player())); //

"Player 1"

DebugLog(Wrapper<Player>.SafeToString(null)); // ""

The major difference comes in when we consider what we’re allowed
to do with type parameters. By default, a C# type parameter is
treated like a System.Object/object. That means it has almost no
functionality beyond basics like the ToString() and default(T)
expressions we used above.

We can add restrictions using where constraints to enable more
functionality, but this is very limited. There are a handful of
constraints like where T : new() that allow us to call a default
constructor or where T : class that allow us to use null, but mostly
we use where T : ISomeInterface or where T : SomeBaseClass to
enable calls to virtual functions in the interface or base class.

Let’s try porting one of the above Vector2 examples from C++ to C#:

template<typename T>

struct Vector2

{

 T X;

 T Y;

 T Dot(const Vector2<T>& other) const

 {

 return X*other.X + Y*other.Y;

 }

};

First, a literal translation of the syntax looks like this:

// C#

public struct Vector2<T>

{

 public T X;

 public T Y;

 public T Dot(in Vector2<T> other)

 {

 return X*other.X + Y*other.Y;

 }

}

Other than needing to make Dot non-const, because that’s not
supported in C#, not much has changed. The problem is that we now
get compiler errors on X*other.X, Y*other.Y, and the + operator
between them:

Operator ‘‘ cannot be applied to operands of type ‘T’ and ‘T’
Operator ‘‘ cannot be applied to operands of type ‘T’ and ‘T’
Operator ‘+’ cannot be applied to operands of type ‘T’ and ‘T’

The compiler is treating T as an object and both object*object and
object+object are compiler errors. It doesn’t matter that we only
ever use types like float and double that do support the * and +
operators. The compiler insists that all possible types that could be
used for T support T*T and T+T. Since that’s not the case for types
like Player, we get compiler errors.

So we’ll need to add a where constraint in order to restrict T to a
subset of types that does support * and +. Looking over the list of

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/generics/constraints-on-type-parameters

options, we don’t see anything like a where T : T*T or where T :
T+T. Our only option is to avoid * and + and instead call virtual
functions named Multiply and Add in an implemented interface or
base class because we can write where constraints for those.

Here’s such an interface:

// C#

public interface IArithmetic<T>

{

 T Multiply(T a, T b);

 T Add(T a, T b);

}

Here’s a struct that implements it for float:

// C#

public struct FloatArithmetic : IArithmetic<float>

{

 public float Multiply(float a, float b)

 {

 return a * b;

 }

 public float Add(float a, float b)

 {

 return a + b;

 }

}

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/generics/constraints-on-type-parameters

Now we can pass a FloatArithmetic to Vector2 for it to call
IArithmetic.Multiply and IArithmetic.Add on instead of the built-
in * and + operators:

// C#

public struct Vector2<T, TArithmetic>

 where TArithmetic : IArithmetic<T>

{

 public T X;

 public T Y;

 private TArithmetic Arithmetic;

 public Vector2(T x, T y, TArithmetic arithmetic)

 {

 X = x;

 Y = y;

 Arithmetic = arithmetic;

 }

 public T Dot(Vector2<T, TArithmetic> other)

 {

 T xProduct = Arithmetic.Multiply(X, other.X);

 T yProduct = Arithmetic.Multiply(Y, other.Y);

 return Arithmetic.Add(xProduct, yProduct);

 }

}

Here’s how we’d use this:

// C#

var vecA = new Vector2<float, FloatArithmetic>(1, 0,

default);

var vecB = new Vector2<float, FloatArithmetic>(0, 1,

default);

DebugLog(vecA.Dot(vecB)); // 0

While this design works, it’s created several problems. First, we have
a lot of boilerplate in IArithmetic, FloatArithmetic, extra type
arguments to the generics (<T, TArithmetic> instead of just <T>),
and an extra arithmetic parameter to the constructor. That’s a hit to
productivity and readability, but at least not a concern that translates
much to the executable the compiler generates.

The second issue is that our Vector2 has increased in size since it
includes an Arithmetic field. That’s a managed reference to an
IArithmetic. On a 64-bit CPU, it’ll take up at least 8 bytes. Since X
and Y both take up 4 bytes, the size of Vector2 has doubled. This will
impact memory usage and, perhaps more importantly, cache
utilization as only half as many vectors can now fit in a cache line.

The third issue is that FloatArithmetic needs to be “boxed” from a
struct into a managed IArithmetic reference. This will create
garbage for the garbage collector to later collect. In the above
example, this happens with each call to the Vector2 constructor. This
deferred performance cost may cause frame hitches or other issues.

To avoid the boxing, we could switch from a struct to a class and
share a global instance::

https://jacksondunstan.com/articles/5131

// C#

public class FloatArithmetic : IArithmetic<float>

{

 public static readonly FloatArithmetic Default = new

FloatArithmetic();

 public float Multiply(float a, float b)

 {

 return a * b;

 }

 public float Add(float a, float b)

 {

 return a + b;

 }

}

var vecA = new Vector2<float, FloatArithmetic>(1, 0,

FloatArithmetic.Default);

var vecB = new Vector2<float, FloatArithmetic>(0, 1,

FloatArithmetic.Default);

DebugLog(vecA.Dot(vecB)); // 0

This presents another performance issue: our reads of
FloatArithmetic.Default may read from “cold” memory, i.e.
memory that’s not in a CPU cache.

The fourth and final issue is that the calls to Arithmetic.Multiply
and Arithmetic.Add in Dot are virtual function calls because all

functions in interfaces are implicitly virtual. In some cases, the
compiler will be able to conclusively determine that TArithmetic is
FloatArithmetic and “de-virtualize” the calls. In many other cases,
we’ll suffer the runtime overhead of three virtual function calls per
Dot.

Another approach is to wrap the float values in a class that
implements an interface with Multiply and Add:

// C#

public interface INumeric<T>

{

 INumeric<T> Create(T val);

 T Value { get; set; }

 INumeric<T> Multiply(T val);

 INumeric<T> Add(T val);

}

public class FloatNumeric : INumeric<float>

{

 public float Value { get; set; }

 public FloatNumeric(float val)

 {

 Value = val;

 }

 public INumeric<float> Create(float val)

 {

 return new FloatNumeric(val);

https://jacksondunstan.com/articles/5490

 }

 public INumeric<float> Multiply(float val)

 {

 return Create(Value * val);

 }

 public INumeric<float> Add(float val)

 {

 return Create(Value + val);

 }

}

Vector2 can now hold INumeric fields and call its virtual functions:

// C#

public struct Vector2<T, TNumeric>

 where TNumeric : INumeric<T>

{

 public TNumeric X;

 public TNumeric Y;

 public Vector2(TNumeric x, TNumeric y)

 {

 X = x;

 Y = y;

 }

 public T Dot(Vector2<T, TNumeric> other)

 {

 INumeric<T> xProduct = X.Multiply(other.X.Value);

 INumeric<T> yProduct = Y.Multiply(other.Y.Value);

 INumeric<T> sum = xProduct.Add(yProduct.Value);

 return sum.Value;

 }

}

var vecA = new Vector2<float, FloatNumeric>(

 new FloatNumeric(1),

 new FloatNumeric(0)

);

var vecB = new Vector2<float, FloatNumeric>(

 new FloatNumeric(0),

 new FloatNumeric(1)

);

DebugLog(vecA.Dot(vecB)); // 0

This suffers the same problems as the previous approach: garbage
creation for each FloatNumeric that’s created, virtual function calls to
Add and Multiply, extraneous type parameters, boilerplate, etc. At
this point, many C# programmers will give up and manually
“instantiate” the Vector2 “template” like a C++ compiler would:

// C#

public struct Vector2Float

{

 public float X;

 public float Y;

 public float Dot(in Vector2Float other)

 {

 return X*other.X + Y*other.Y;

 }

}

public struct Vector2Double

{

 public double X;

 public double Y;

 public double Dot(in Vector2Double other)

 {

 return X*other.X + Y*other.Y;

 }

}

public struct Vector2Int

{

 public int X;

 public int Y;

 public int Dot(in Vector2Int other)

 {

 return X*other.X + Y*other.Y;

 }

}

var vecA = new Vector2Float{X=1, Y=0};

var vecB = new Vector2Float{X=0, Y=1};

DebugLog(vecA.Dot(vecB)); // 0

This is efficient, but now suffers all the usual issues with code
duplication: the need to change many copies, bugs when the copies
get out of sync, etc. To address this, we may turn to a code
generation tool that uses some form of templates to generates .cs
files. This may be run in an earlier build step, but it won’t be
integrated into the main codebase, may require additional
languages, still requires unique naming, and a variety of other
issues.

C++ avoids the code duplication, the external tools, the virtual
function calls, the cold memory reads, the boxing and garbage
collection, the need for an interface and boilerplate implementation
of it, the extra type parameters, and the where constraints. Instead, it
simply produces a compiler error when T*T or T+T is a syntax error.

https://jacksondunstan.com/articles/4959

Conclusion

We’ve barely scratched the surface of templates and already we’ve
seen that they’re far more powerful than C# generics. We can easily
write code like Dot that’s simultaneously efficient, readable, and
generic. C# struggles with even simple examples like this and often
requires us to sacrifice one or more of these qualities.

26. Template Parameters

Type Template Parameters

All of the examples of templates in the intro chapter took one
parameter:

template<typename T>

That’s often enough to create many templates as we’ve seen from
types like C#’s List<T> and NativeArray<T> generic classes. Still,
many others like Dictionary<TKey, TValue> require more
parameters. Adding these is simple and just like adding function
parameters:

// Class template that takes two parameters

template<typename TKey, typename TValue>

struct Pair

{

 TKey Key;

 TValue Value;

};

// Specify both parameters to instantiate the template

Pair<int, float> pair{123, 3.14f};

DebugLog(pair.Key, pair.Value); // 123, 3.14

Also similar to function parameters, but unlike type parameters to C#
generics, we can specify default values:

// Second parameter has a default value

template<typename TKey, typename TValue=int>

struct Pair

{

 TKey Key;

 TValue Value;

};

// Only need to pass one parameter

// The second gets the default: int

Pair<int> pair1{123, 456};

DebugLog("TValue is int?", typeid(pair1.Value) ==

typeid(int)); // true

DebugLog(pair1.Key, pair1.Value); // 123, 456

// We can still pass two parameters

Pair<int, float> pair2{123, 3.14f};

DebugLog("TValue is int?", typeid(pair2.Value) ==

typeid(int)); // false

DebugLog(pair2.Key, pair2.Value); // 123, 3.14

It’s also common to see class instead of template in the template
parameters list. There is no difference between the two. Non-class
types like int and float are perfectly usable with class template
parameters. The choice of which to use is mostly one of style:

// Parameters are "class" instead of "typename"

// Behaves the same

template<class TKey, class TValue=int>

struct Pair

{

 TKey Key;

 TValue Value;

};

// Non-class types are still usable as template arguments

Pair<int> pair1{123, 456};

Pair<int, float> pair2{123, 3.14f};

Unlike C#, the names of the parameters are optional, even when
they have default values:

// Parameter names omitted, with and without default

values

template<class, class=int>

void DoNothing()

{

}

DoNothing<float>();

DoNothing<float, int>();

The types also don’t need to be defined, only declared, in order to be
used to instantiate a template. This works as long as the template
doesn’t use the type, similar to if it wasn’t given a name at all:

// Declared, but not defined

struct Vector2;

// Template that doesn't use its type parameter

template<typename T>

void DoNothing()

{

}

// OK because Vector2 doesn't actually get used

DoNothing<Vector2>();

In the case that a template parameter has the same name as a
name outside of the template, there’s no collision as the context
makes it clear which one is being referred to:

struct Vector

{

 float X = 0;

 float Y = 0;

};

// Template parameter has the same name as a class

outside the template: Vector

template<typename Vector>

Vector Make()

{

 return Vector{};

}

// "int" used as the type named "Vector"

auto val = Make<int>();

DebugLog(val); // 0

// "Vector" doesn't refer to the type parameter

// The template isn't referenced here

auto vec = Vector{};

DebugLog(vec.X, vec.Y); // 0, 0

Template Template Parameters

Consider a Map class template that holds keys and values via a
List<T> class template:

template<typename T>

struct List

{

 // ... implementation similar to C#

};

template<typename TKey, typename TValue>

struct Map

{

 List<TKey> Keys;

 List<TValue> Values;

};

Map<int, float> map;

The Map template always uses the List template. If we wanted to
abstract the kind of container that holds the keys and values to make
Map more flexible, we could use a “template template parameter.”
This is where we pass a template like List, not an instantiation of a
template like List<T>, as a parameter to a template:

template<typename T>

struct List

{

 // ... implementation similar to C#

};

template<typename T>

struct FixedList

{

 // ... implementation similar to C# except that it's

a fixed size

};

// The third parameter is a template, not a type

// That template needs to take one type parameter

template<typename TKey, typename TValue,

template<typename> typename TContainer>

struct Map

{

 // Use the template parameter instead of directly

using List

 TContainer<TKey> Keys;

 TContainer<TValue> Values;

};

// Pass List, which is a template taking one type

parameter, as the parameter

// Do not pass an instantiation of the template like

List<int>

Map<int, float, List> listMap;

// Pass FixedList as the parameter

// It also takes one type parameter

Map<int, float, FixedList> fixedListMap;

When we do this, the compiler instantiates these two classes for
listMap and fixedListMap:

struct MapList

{

 List<int> Keys;

 List<float> Values;

};

struct MapFixedList

{

 FixedList<int> Keys;

 FixedList<float> Values;

};

Template template parameters can also have default values:

template<

 typename TKey,

 typename TValue,

 template<typename> typename TKeysContainer=List,

 template<typename> typename TValuesContainer=List>

struct Map

{

 TKeysContainer<TKey> Keys;

 TValuesContainer<TValue> Values;

};

// TKeysContainer=List, TValuesContainer=List

Map<int, float> map1;

// TKeysContainer=FixedList, TValuesContainer=List

Map<int, float, FixedList> map2;

// TKeysContainer=FixedList, TValuesContainer=FixedList

Map<int, float, FixedList, FixedList> map3;

Non-Type Template Parameters

The third kind of template parameter is known as a “non-type
template parameter.” These are compile-time constant values, not
the names of types or templates. For example, we can use this to
write the FixedList type backed by an array data member:

// Size is a "non-type template parameter"

// A compile-time constant needs to be passed

template<typename T, int Size>

struct FixedList

{

 // Use Size like any other int

 T Elements[Size];

 T& operator[](int index)

 {

 return Elements[index];

 }

 int GetLength() const noexcept

 {

 return Size;

 }

};

// Pass 3 for Size

FixedList<int, 3> list1;

list1[1] = 123;

DebugLog(list1[1]); // 123

// Pass 2 for Size

FixedList<float, 2> list2;

list2[0] = 3.14f;

DebugLog(list2[0]); // 3.14

Just like with “type template parameters” and “template template
parameters,” the compiler substitutes the value anywhere it’s used
when instantiating the template:

struct FixedListInt3

{

 int Elements[3];

 int& operator[](int index)

 {

 return Elements[index];

 }

 int GetLength() const noexcept

 {

 return 3;

 }

};

struct FixedListFloat2

{

 float Elements[2];

 float& operator[](int index)

 {

 return Elements[index];

 }

 int GetLength() const noexcept

 {

 return 2;

 }

};

Default values are allowed for non-type template parameters, too:

// Template parameters control the initial capacity and

growth factor

template<typename T, int InitialCapacity=4, int

GrowthFactor=2>

class List

{

 // ... implementation

};

We can now use these to tune the performance of our List classes
based on expected usage:

// Defaults are acceptable

List<int> list1;

// Start off with a lot of capacity

List<int, 1024> list2;

// Don't start with a little capacity, but grow fast

List<int, 4, 10> list3;

// Start empty and grow by doubling

List<int, 0, 2> list4;

The kinds of values we can pass to non-type template parameters is
restricted to “structural types.” The first such kind of “structural type”
is the one we’ve already seen: integers. We can use any size (short,
long, etc.) and it doesn’t matter if it’s signed or not (signed,
unsigned, no specifier). This also includes quasi-integers like char
and the type of nullptr.

The second kind of values are pointers and lvalue references:

// Takes a pointer and a reference to some type T

template<typename T, const T* P, const T& R>

constexpr T Sum = *P + R;

// A constant array and a constant integer

constexpr int a[] = { 100 };

constexpr int b = 23;

// The 'a' array "decays" to a pointer

// The 'b' integer is an lvalue because it has a name: b

constexpr int sum = Sum<int, a, b>;

DebugLog(sum); // 123

The third kind is similar: pointers to members.

// A class with two int data members

struct Player

{

 int Health = 100;

 int Armor = 50;

};

// Template for a function that gets an int data member

// Takes the type of the class and a pointer to one of

its int data members

template<typename TCombatant, int TCombatant::* pStat>

constexpr int GetStat(const TCombatant& combatant)

{

 return combatant.*pStat;

}

// Get both int data members via the function template

and pointers to members

Player player;

DebugLog(GetStat<Player, &Player::Health>(player)); //

100

DebugLog(GetStat<Player, &Player::Armor>(player)); // 50

Starting in C++20, there are two more kinds. First, floating point
types like float and double:

template<float MinValue, float MaxValue>

float Clamp(float value)

{

 return x > MaxValue ? MaxValue : x < MinValue ?

MinValue : value;

}

DebugLog(Clamp<0, 100>(50)); // 50

DebugLog(Clamp<0, 100>(150)); // 100

DebugLog(Clamp<0, 100>(-50)); // 0

Second, “literal types” we’ve seen before when writing compile-time
code:

// As a simple aggregate, this is a "literal type"

struct Pixel

{

 int X;

 int Y;

};

// Template taking a "literal type"

template<Pixel P>

bool IsTopLeft()

{

 return P.X == 0 && P.Y == 0;

}

// Passing a "literal type" as a template argument

DebugLog(IsTopLeft<Pixel{2, 4}>()); // false

DebugLog(IsTopLeft<Pixel{0, 0}>()); // true

Regardless of language version, there are some additional
restrictions on the kinds of expressions we can pass as a template
argument. First, we can’t pass pointers or references to sub-objects
such as base classes and array elements:

template<const int& X>

constexpr int ValOfTemplateParam = X;

constexpr int a[] = { 100 };

// Compiler error: can't reference sub-object of a as

non-type template param

constexpr int val = ValOfTemplateParam<a[0]>;

Temporary objects also can’t be passed:

// Compiler error: can't pass a temporary object

constexpr int val = ValOfTemplateParam<123>;

Nor can string literals:

template<const char* str>

void Print()

{

 DebugLog("Letter:", *str);

}

constexpr char c = 'A';

// Compiler error: can't pass a string literal

Print<"hi">();

Print<&c>(); // Letter: A

And finally, whatever type typeid returns can’t be passed as a
template argument:

template<decltype(typeid(char)) tid>

void PrintTypeName()

{

 DebugLog(tid.name());

}

// Compiler error: can't pass what typeid evaluates to

PrintTypeName<typeid(char)>();

While they’re not strictly prohibited, it’s important to know that arrays
in template parameters are implicitly converted to pointers. This can
have some important consequences:

// Array parameter is automatically transformed to a

pointer

template<const int X[]>

constexpr void PrintSizeOfArray()

{

 // Bug: prints the size of a pointer, not the size of

the array

 DebugLog(sizeof(X));

}

constexpr int32_t arr[3] = { 100, 200, 300 };

// Bug

PrintSizeOfArray<arr>(); // 8 (on 64-bit CPUs)

// OK

DebugLog(sizeof(arr)); // 12

Ambiguity

There are a few cases that can arise where template parameters
appear ambiguous. Similar to operator precedence, there are clear
rules that determine how the compiler disambiguates template
parameters. These cases usually don’t arise as programmers make
good choices with naming, but it’s important to know the rules to be
able to figure out what the compiler is doing in edge cases.

The first case happens when a member template is declared outside
the class with a parameter that has the same name as a member of
the class it’s a member of. In this case, the member of the class is
used instead of the template parameter:

// Class template with one type parameter: T

template<class T>

struct MyClass

{

 // Member class

 struct Thing

 {

 };

 // Member function declaration, not definition

 int GetSizeOfThing();

};

// Member function definition outside the class

// Uses 'Thing' instead of 'T' as the class' type

parameter name

// 'Thing' is the same name as the member class 'Thing'

template<class Thing>

int MyClass<Thing>::GetSizeOfThing()

{

 // 'Thing' refers to the member class, not the type

parameter

 return sizeof(Thing);

}

// Instantiate the class template with T=double

MyClass<double> mc{};

// Call the member function on a MyClass<double>

// Returns the size of the member class: 1 for an empty

struct

DebugLog(mc.GetSizeOfThing()); // 1, not 8

The second case also happens when a member of a class template
is defined outside the class template. Specifically, it only happens
when the name of a parameter is the same as the name of a
member of the namespace the class is in. In this case, we get the
opposite: the type parameter is used instead of the namespace
member.

namespace MyNamespace

{

 // Class member of the namespace

 class Thing

 {

 };

 // Class template with one type parameter: T

 template<class T>

 struct MyClass

 {

 // Member function declaration, not definition

 int GetSizeOfThing(T thing);

 };

}

// Member function definition outside the class

// Uses 'Thing' instead of 'T' as the class' type

parameter name

// 'Thing' is the same name as the namespace member class

'Thing'

// 'Thing' is used as the type of a parameter to the

function

template<class Thing>

int MyNamespace::MyClass<Thing>::GetSizeOfThing(Thing

thing)

{

 // 'Thing' refers to the type parameter, not the

namespace member

 return sizeof(Thing);

}

// Instantiate the class template with T=double

MyNamespace::MyClass<double> mc{};

// Call the member function on a MyClass<double>

// Returns the size of the type parameter: 8 for double

DebugLog(mc.GetSizeOfThing({})); // 8, not 1

The third case is when a class template’s parameter has the same
name as a member of one of its base classes. In this case, the
ambiguity goes to the base class’ member:

struct BaseClass

{

 struct Thing

 {

 };

};

// Class template with one type parameter: Thing

// 'Thing' is the same name as the base class' member

class 'Thing'

template<class Thing>

struct DerivedClass : BaseClass

{

 // 'Thing' refers to the base class' member class,

not the type parameter

 int Size = sizeof(Thing);

};

// Instantiate the class template with Thing=double

DerivedClass<double> dc;

// See how big 'Thing' was when initializing 'Size'

// It's the size of BaseClass::Thing: 1 for an empty

struct

DebugLog(dc.Size); // 1, not 8

Unlike the first two cases, this case is possible in C# as well. Unlike
C++, Thing refers to the type parameter, not the base class member:

// C#

public class BaseClass

{

 public struct Thing

 {

 };

};

// Generic class with one type parameter: Thing

// 'Thing' is the same name as the base class' member

class 'Thing'

public class DerivedClass<Thing> : BaseClass

{

 // 'Thing' refers to the type parameter, not base

class' member class

 public Type ThingType = typeof(Thing);

};

// Instantiate the generic class with Thing=double

DerivedClass<double> dc = new DerivedClass<double>();

// See what type 'Thing' was when initializing

'ThingType'

// It's the type parameter 'double', not BaseClass.Thing

DebugLog(dc.ThingType); // System.Double

Conclusion

C# generics provide support for type parameters, but not the non-
type parameters and template parameters that C++ templates
provide support for. Even so, C++ type parameters include additional
functionality such as support for default arguments and omitting the
name of the parameter.

Template parameters allow for more generic code by using a
template like Container as a variable rather than a specific template
like List<T>. Non-type template parameters allow passing compile-
time constant expressions so we can use values, not types, in our
templates. This allows us to create class templates like
FixedList<T> with static sizes to avoid dynamic allocation and the
cost of dynamic resizing when we don’t need it or to tune the
allocation strategy of a List<T> when we do need dynamic resizing.

27. Template Deduction and Specialization

Template Argument Deduction

The compiler has to know all the arguments to instantiate a template,
but that doesn’t mean we have to explicitly state them all. Just like
how we can use auto variables, parameters, and return values and
the compiler will deduce their types, the compiler can also deduce
template arguments.

The same is true to some extent with C# generics. Consider this
example:

// C#

static class TypeUtils

{

 // Generic method

 public static void PrintType<T>(T x)

 {

 DebugLog(typeof(T));

 }

}

// Type arguments explicitly specified

TypeUtils.PrintType<int>(123); // System.Int32

TypeUtils.PrintType<bool>(true); // System.Boolean

// Type arguments deduced by the compiler

TypeUtils.PrintType(123); // System.Int32

TypeUtils.PrintType(true); // System.Boolean

The same works in C++, as we see in this literal translation of the
C#:

struct TypeUtils final

{

 // Member function template

 template<typename T>

 static void PrintType(T x)

 {

 DebugLog(typeid(T).name());

 }

};

// Type arguments explicitly specified

TypeUtils::PrintType<int>(123); // i

TypeUtils::PrintType<bool>(true); // b

// Type arguments deduced by the compiler

TypeUtils::PrintType(123); // i

TypeUtils::PrintType(true); // b

Support for deduction in C++ is considerably more advanced than in
C#. For example, non-type template parameters can be deduced:

// Template has one type parameter (T) and one non-type

parameter (N)

template<class T, int N>

// Function takes a reference to an array of length N

const T elements

int GetLengthOfArray(const T (&t)[N])

{

 return N;

}

// Compiler deduces T as int and N as 3

DebugLog(GetLengthOfArray({1, 2, 3})); // 3

// Compiler deduces T as float and N as 2

DebugLog(GetLengthOfArray({2.2f, 3.14f})); // 2

Template template parameters can be deduced, too:

// Template with two parameters:

// 1) T, a type parameter

// 2) TContainer, a template parameter

template<typename T, template<typename> typename

TContainer>

void PrintLength(const TContainer<T>& container)

{

 DebugLog(container.Length);

}

template<typename T>

struct List

{

 int Length;

};

List<int> list{};

PrintLength(list); // T deduced as int, TContainer

deduced as List

The compiler will also consider all the overloaded functions in an
attempt to find the one that matches best:

// Template takes one type parameter

template<class T>

// Function takes a pointer to a function that takes a T

and returns a T

int CallWithDefaultAndReturn(T(*func)(T))

{

 return func({});

}

int AddOne(int x)

{

 DebugLog("int");

 return x + 1;

}

int AddOne(char x)

{

 DebugLog("char");

 return x + 1;

}

// CallWithDefaultAndReturn is an overload set

// Compiler looks at this function and deduces that T is

int:

// int AddOne(int)

// Compiler looks at this function and fails to deduce T:

// int AddOne(char)

// Since deduction succeeded for one of them, that one

gets passed

DebugLog(CallWithDefaultAndReturn(AddOne)); // "int" then

1

Note that deduction involves a few transformations of types. First,
arrays “decay” to pointers:

template<class T>

void ArrayOrPointer(T)

{

 DebugLog("is array?", typeid(T) == typeid(int[3]));

 DebugLog("is pointer?", typeid(T) == typeid(int*));

}

int arr[3];

ArrayOrPointer(arr); // is array? false, is pointer? true

Second, functions “decay” to function pointers:

void SomeFunction(int) {}

template<class T>

void FunctionOrPointer(T)

{

 DebugLog("is function?", typeid(T) ==

typeid(decltype(SomeFunction)));

 DebugLog("is pointer?", typeid(T) == typeid(void(*)

(int)));

}

FunctionOrPointer(SomeFunction); // is function? false,

is pointer? true

And third, const is removed:

template<class T>

void ConstOrNonConst(T x)

{

 // If T was 'const int' then this would be a compiler

error

 x = {};

}

const int c = 123;

ConstOrNonConst(c); // Compiles, meaning T is non-const

int

Fourth, references to T become just T:

template<class T>

void RefDetector(T x)

{

 // If T is a reference, this assigns to the caller's

value

 // If T is not a reference, this assigns to the local

copy

 x = 123;

}

int i = 42;

int& ri = i;

RefDetector(ri);

DebugLog(i); // 42

To keep the reference, we have to say that we want a reference by
adding the &:

template<class T>

void RefDetector(T& x) // <-- Added &

{

 x = 123;

}

int i = 42;

int& ri = i;

RefDetector(ri);

DebugLog(i); // 123

One exception is when passing an lvalue to a function template that
takes a non-const rvalue reference. In this case, the compiler will
deduce the type as an rvalue reference:

template<class T>

void Foo(T&&)

{

}

int i = 123; // lvalue, not lvalue reference

Foo(i); // T is int&&

Foo(123); // T is int&

After these transformations, the compiler looks for an exact match
but it’ll also accept a few discrepancies. First, non-const will match
const but not the other way around:

template<typename T>

void TakeConstRef(const T& x)

{

}

template<typename T>

void TakeNonConstRef(T& x)

{

 x = 42;

}

// Compiler deduces T='const int&' even though 'i1' is

non-const

int i1 = 123;

TakeConstRef(i1);

// Compiler deduces T='const int&'

const int i2 = 123;

TakeNonConstRef(i2); // Compiler error: can't assign to x

Second, the same is true for pointers:

template<typename T>

void TakeConstRef(const T* p)

{

}

template<typename T>

void TakeNonConstRef(T* p)

{

 *p = 42;

}

// Compiler deduces T='const int*' even though 'i1' is

non-const

int i1 = 123;

TakeConstRef(&i1);

// Compiler deduces T='const int*'

const int i2 = 123;

TakeNonConstRef(&i2); // Compiler error: can't assign to

*p

And third, derivation is allowed to support polymorphism:

template<class T>

struct Base

{

};

template<class T>

struct Derived : public Base<T>

{

};

template<class T>

void TakeBaseRef(Base<T>&)

{

}

Derived<int> derived;

// Compiler accepts Derived<T> for Base<T> an deduces

that T is 'int'

TakeBaseRef(derived);

Class Template Argument Deduction

Since C++17, the arguments to a class template can also be
deduced:

// Class template

template<class T>

struct Vector2

{

 T X;

 T Y;

 Vector2(T x, T y)

 : X{x}, Y{y}

 {

 }

};

// Explicit class template argument: float

Vector2<float> v1{2.0f, 4.0f};

// Compiler deduces the class template argument: float

Vector2 v2{2.0f, 4.0f};

// Also works with 'new'

// 'v3' is a Vector<float>*

auto v3 = new Vector2{2.0f, 4.0f};

To help the compiler deduce these arguments, we can write a
“deduction guide” to tell it what to do:

// Class template

template<class T>

struct Range

{

 // Constructor template

 template<class Pointer>

 Range(Pointer beg, Pointer end)

 {

 }

};

double arr[] = { 123, 456 };

// Compiler error: can't deduce T (class template

argument) from constructor

Range range1{&arr[0], &arr[1]};

// Deduction guide tells the compiler how to deduce the

class template argument

template<class T>

Range(T* b, T* e) -> Range<T>;

// OK: compiler uses deduction guide to deduce that T is

'double'

Range range2{&arr[0], &arr[1]};

As we see in this example, deduction guides are written like a
function template with the “trailing return syntax.” The major
difference is that their name is the name of a class template and
their “return type” is a class template with its arguments passed.

Specialization

So far, all of our templates have been instantiated the same way
regardless of the template arguments provided to them. Sometimes
we want to use an alternate version of the template when certain
arguments are provided. This is called specialization of a template.
Consider this class template:

// A very generalized vector

template<typename T, int N>

struct Vector

{

 T Components[N];

 T Dot(const Vector<T, N>& other) const noexcept

 {

 T result{};

 for (int i = 0; i < N; ++i)

 {

 result += Components[i] *

other.Components[i];

 }

 return result;

 }

};

// Usage

Vector<float, 2> v1{2, 4};

DebugLog(v1.Components[0], v1.Components[1]); // 2, 4

Vector<float, 2> v2{6, 8};

DebugLog(v1.Dot(v2)); // 44

Now let’s specialize Vector for a common use case: two float
components.

// Specialization of the Vector template

template<> // Takes no arguments

struct Vector<float, 2> // Arguments are provided by the

specialization instead

{

 // Specialization can have very different contents

 // This union allows access either by the Components

array or X and Y

 union

 {

 float Components[2];

 struct

 {

 float X;

 float Y;

 };

 };

 float Dot(const Vector<float, 2>& other) const

noexcept

 {

 // Specialized version doesn't need a loop

 // Easier for readers to understand

 // Compiler can't fail to optimize out the loop

 return X*other.X + Y*other.Y;

 }

};

// We can use X and Y or the Components array to access

the components

Vector<float, 2> v1{2, 4};

DebugLog(v1.Components[0], v1.Components[1]); // 2, 4

DebugLog(v1.X, v1.Y); // 2, 4

// Dot still works

Vector<float, 2> v2{6, 8};

DebugLog(v1.Dot(v2)); // 44

There are several reasons we might want to specialize the Vector
template for common types and sizes of vectors. Perhaps we’ve
inspected the assembly and realized that the compiler didn’t optimize
out the loop in Dot. Perhaps we want to add the convenience of X
and Y data members as synonyms for the first two elements of the
Components array. Perhaps we want to use SIMD instructions that
only work on particular numbers of particular data types. We’ll see
how to do that later in the book.

Regardless of our reasons, there are a couple aspects of the above
example to take note of. First, we’re able to specialize not just type
parameters like T but also non-type parameters like N.

Second, our specialization is also named Vector. It doesn’t get a
unique name like Vector2. Usually, specializations are meant to be
transparent to the user of the template. The template author often
provides them to optimize some use case or to provide a superset of
functionality in some particular case. The Vector<float, 2>
specialization could have omitted the Components array, but then a
Vector<float, 2> wouldn’t be compatible with other instantiations of
Vector:

template<>

struct Vector<float, 2>

{

 // No Components

 float X;

 float Y;

 float Dot(const Vector<float, 2>& other) const

noexcept

 {

 return X*other.X + Y*other.Y;

 }

};

Vector<float, 2> v1{2, 4};

// Compiler error: Vector<float, 2> doesn't have a

Components data member

DebugLog(v1.Components[0], v1.Components[1]); // 2, 4

// OK: Vector<float, 2> has X and Y

DebugLog(v1.X, v1.Y); // 2, 4

That said, sometimes incompatibility is desirable. Take the cross
product, for example. We may want to omit this from specializations
of 2D vectors as the operation doesn’t make a lot of sense. Then
again, we might want to return a 3D vector such as (0, 0, 1) or (0,
0, -1). Template specializations give us the flexibility to make this
design choice.

Finally, we also have the option to “partially specialize” a template.
We use a “partial specialization” when we only want to specialize
some of the template arguments, not all of them like above. For
example, we might want to specialize for 2D vectors but not for
float:

// Partial specialization of the Vector template

// Now takes only one parameter: the type T

template<typename T>

// Pass arguments to the main Vector template

// They can be either parameters to the specialization or

regular arguments

struct Vector<T, 2>

{

 union

 {

 // We can still use T, but we also know that N is

2

 T Components[2];

 struct

 {

 T X;

 T Y;

 };

 };

 T Dot(const Vector<T, 2>& other) const noexcept

 {

 // The loop is removed, but we still support any

arithmetic type

 return X*other.X + Y*other.Y;

 }

};

// X and Y are available

Vector<float, 2> v1{2, 4};

DebugLog(v1.X, v1.Y); // 2, 4

// Multiple types (float and double) are usable now

Vector<double, 2> v2{6, 8};

DebugLog(v2.X, v2.Y); // 6, 8

Conclusion

Both C# and C++ support argument deduction in their generics and
templates. As usual, C++ goes way further and with more
complexity. It can deduce non-type parameters and template
parameters as well as class arguments leading to much more terse
code: Dictionary, not Dictionary<MyKeyType, MyValueType>.
Deduction guides give us a tool to really push what’s deductible
rather than settling for defaults.

28. Variadic Templates

Parameter Packs

A “variadic template” is one that has a “parameter pack.” A
parameter pack represents zero or more parameters, just like params
to a C# function represents an array of zero or more parameters.

Here’s a variadic function template that includes one parameter
pack:

template<typename ...TArgs>

void LogAll(TArgs... args)

{

}

TArgs is a parameter pack because it has ... before the (optional)
parameter name: TArgs. It’s a parameter pack of type parameters
because it starts with typename.

To use the parameter pack, we add ... after the name of the
parameter: TArgs.... The compiler expands this to a comma-
delimited list of the arguments.

Let’s look at some instantiations of this template to see how this
expansion works:

// Zero arguments to the TArgs parameter pack

LogAll();

void LogAll() {}

// One argument to the TArgs parameter pack

LogAll<int>(123);

void LogAll(int) {}

// One argument to the TArgs parameter pack (with

deduction)

LogAll(123);

void LogAll(int) {}

// Two arguments to the TArgs parameter pack

LogAll(123, 3.14f);

void LogAll(int, float) {}

We’re free to mix parameter packs with other template parameters:

template<typename TPrefix, typename ...TArgs>

void LogAll(TPrefix prefix, TArgs... args)

{

}

Unlike C# params, the parameter pack doesn’t even have to be the
last parameter as long as the compiler can deduce all the
parameters:

// Parameter pack is not the last parameter

template<typename ...TLogParts, typename TPrefix>

void LogWithPrefix(TPrefix prefix, TLogParts... parts)

{

}

// Compiler deduces that TPrefix is 'float' and TLogParts

is (int, int, int)

LogWithPrefix(3.14f, 123, 456, 789);

Note that the compiler can never deduce this with class templates,
so the parameter pack must come at the end.

Pack Expansion

Now that we know how to declare packs of template parameters and
how to use them in function parameters, let’s look at some more
ways to use them. One common way is to pass them as function
arguments:

template<typename ...TArgs> // Template parameter pack

void LogError(TArgs... args) // Use parameter pack to

declare parameters

{

 DebugLog("ERROR", args...); // Pass parameters as

arguments to a function

}

// Pass arguments to function template

// Template arguments deduced from parameter types

LogError(3.14, 123, 456, 789); // ERROR, 3.14, 123, 456,

789

// The compiler instantiates this function

void LogError(double arg1, int arg2, int arg3, int arg4)

{

 DebugLog("ERROR", arg1, arg2, arg3, arg4);

}

In this example we passed the arguments straight through as
args.... This was expanded to arg1, arg2, arg3, arg4. If we apply

some operation to the parameter pack name, it’ll be applied to all of
the arguments:

template<typename ...TArgs>

void LogPointers(TArgs... args)

{

 // Apply dereferencing to each value in the pack

 DebugLog(*args...);

}

// Pass pointers

float f = 3.14f;

int i1 = 123;

int i2 = 456;

LogPointers(&f, &i1, &i2); // 3.14, 123, 456

// The compiler instantiates this function

void LogPointers(float* arg1, int* arg2, int* arg3)

{

 DebugLog(*arg1, *arg2, *arg3);

}

If we name more than one parameter pack in the same expansion,
they get expanded simultaneously:

// Class template with two parameters

template<typename T1, typename T2>

struct KeyValue

{

 T1 Key;

 T2 Value;

};

// Class template with a parameter pack

template<typename ...Types>

struct Map

{

 // ...implementation

};

// Class template with a parameter pack

template<class ...Keys>

struct MapOf

{

 // Member class template with a parameter pack

 template<class ...Values>

 // Derives from Map class template

 // Pass KeyValue<Keys, Values>... as the template

arguments to Map

 // Expands to (KeyValue<Keys1, Values1>,

KeyValue<Keys2, Values2>, etc.)

 struct KeyValues : Map<KeyValue<Keys, Values>...>

 {

 };

};

// Instantiate the template with Keys=(int, float) and

Values=(double, bool)

// Pairs derives from Map<KeyValue<int, double>,

KeyValue<float, bool>>

MapOf<int, float>::KeyValues<double, bool> map;

// The compiler instantiates this class

struct MapOf

{

 struct KeyValues : Map<KeyValue<int, double>,

KeyValue<float, bool>>

 {

 };

};

Where Packs Can Be Expanded

So far we’ve seen packs expanded into function parameters,
function arguments, and template arguments. There are quite a few
more places they can be expanded. First, when initializing with
parentheses:

struct Pixel

{

 int X;

 int Y;

 Pixel(int x, int y)

 : X(x), Y(y)

 {

 }

};

// Function template takes a parameter pack of ints

template<int ...Components>

Pixel MakePixel()

{

 // Expand into parentheses initialization

 return Pixel(Components...);

};

Pixel pixel = MakePixel<2, 4>();

DebugLog(pixel.X, pixel.Y); // 2, 4

Or initializing with curly braces:

// Function template takes a parameter pack of ints

template<int ...Components>

Pixel MakePixel()

{

 // Expand into curly braces initialization

 return Pixel{Components...};

};

Second, we can expand type parameter packs into packs of non-
type parameters:

// Class template with a pack of type parameters

template<typename... Types>

struct TypedPrinter

{

 // Function template with a pack of non-type

parameters

 // Formed from the expansion of the Types pack

 template<Types... Values>

 static void Print()

 {

 // Expand the non-type parameters pack

 DebugLog(Values...);

 }

};

// Instantiate the templates with type and non-type

parameters

TypedPrinter<char, int>::Print<'c', 123>(); // c, 123

// Compiler error: 'c' is not a bool

TypedPrinter<bool, int>::Print<'c', 123>();

Third, a class can inherit from zero or more base classes by
expanding a pack of types:

struct VitalityComponent

{

 int Health;

 int Armor;

};

struct WeaponComponent

{

 float Range;

 int Damage;

};

struct SpeedComponent

{

 float Speed;

};

template<class... TComponents>

// Expand a pack of base classes

class GameEntity : public TComponents...

{

};

// turret is a class that derives from VitalityComponent

and WeaponComponent

GameEntity<VitalityComponent, WeaponComponent> turret;

turret.Health = 100;

turret.Armor = 200;

turret.Range = 10;

turret.Damage = 15;

// civilian is a class that derives from

VitalityComponent and SpeedComponent

GameEntity<VitalityComponent, SpeedComponent> civilian;

civilian.Health = 100;

civilian.Armor = 200;

civilian.Speed = 2;

Fourth, the list of a lambda’s captures can be formed by pack
expansion:

template<class ...Args>

void Print(Args... args)

{

 // Expand the 'args' pack into the lambda capture

list

 auto lambda = [args...] { DebugLog(args...); };

 lambda();

}

Print(123, 456, 789); // 123, 456, 789

Fifth, the sizeof operator has a variant that takes a parameter pack.
This evaluates to the number of elements in the pack, regardless of
their sizes:

// General form of summation

// Declaration only since it's never actually

instantiated

template<typename ...TValues>

int Sum(TValues... values);

// Specialization for when there is at least one value

template<typename TFirstValue, typename ...TValues>

int Sum(TFirstValue firstValue, TValues... values)

{

 // Expand pack into a recursive call

 return firstValue + Sum(values...);

}

// Specialization for when there are no values

template<>

int Sum()

{

 return 0;

}

template<typename ...TValues>

int Average(TValues... values)

{

 // Expand pack into a Sum call

 // Use sizeof... to count the number of parameters in

the pack

 return Sum(values...) / sizeof...(TValues);

}

DebugLog(Average(10, 20)); // 15

In this example, the compiler instantiates these templates:

// Instantiated for Sum(10, 20)

int Sum2(int firstValue, int value)

{

 // Expand pack into a recursive call

 return firstValue + Sum1(value);

}

// Instantiated for Sum(20)

int Sum1(int firstValue)

{

 return firstValue + Sum0();

}

// Instantiated for Sum()

int Sum0()

{

 return 0;

}

int Average(int value1, int value2)

{

 return Sum2(value1, value2) / 2;

}

DebugLog(Average(10, 20)); // 15

Compiler optimizations will almost always boil this down to a
constant:

DebugLog(15); // 15

Or for arguments x and y that aren’t compile-time constants:

DebugLog((x + y) / 2);

Conclusion

Variadic templates enable us to write templates based on arbitrary
numbers of parameters. This saves us from needing to write nearly-
identical versions of the same templates over and over. For example,
C# has Action<T>, Action<T1,T2>, Action<T1,T2,T3>, all the way up
to
Action<T1,T2,T3,T4,T5,T6,T7,T8,T9,T10,T11,T12,T13,T14,T15,T16
>! The same massive duplication is applied to its Func counterpart:
Func<T1,T2,T3,T4,T5,T6,T7,T8,T9,T10,T11,T12,T13,T14,T15,T16,T
Result>. This is so painful to write that we usually just don’t bother or
write a code generator to output all this redundant C#. At no point do
we end up with a solution that takes arbitrary numbers of
parameters, just arbitrary enough for now numbers of parameters.

29. Template Constraints

Constraints

C# has 11 specific where constraints we can put on type parameters
to generics. These include constraints like where T : new()
indicating that T has a public constructor that takes no parameters. In
contrast, C++ provides us with tools to build our own constraints out
of compile-time expressions.

So far in C++, all of our templates have had no constraints. Still,
we’ve been able to use those parameters in a great many ways. The
difference between the two languages is that the default in C# is to
treat generic parameters as the least common denominator type:
System.Object/object. The default in C++ is the other end of the
spectrum: template parameters may be used in any way that
compiles.

Both languages allow us to set constraints to move the requirements
for parameters more toward the opposite end of the spectrum. This
means that C# where constraints make generics’ type parameters
more specific and therefore allow us to use more specific
functionality like calling a constructor with no parameters. We’re
about to see how C++ template constraints make template
parameters less specific to perform better overload resolution and
give more programmer-friendly compiler error messages. All of this
was added in C++20 and is becoming available in all the major
compilers.

https://en.cppreference.com/w/cpp/compiler_support

Requires Clauses

While C# uses the keyword where to add a constraint, C++ uses
requires. Let’s jump right in and add one to a function template:

struct Vector2

{

 float X;

 float Y;

};

// Variable template

// "Default" value is false

template <typename T>

constexpr bool IsVector2 = false;

// Specialization of the variable template

// Change value to true for a specific type

template <>

constexpr bool IsVector2<Vector2> = true;

// Function template

template <typename TVector, typename TComponent>

// Requires clause

// Compile-time expression evaluates to a bool

// Can use template parameters here

requires IsVector2<TVector>

// The function

TComponent Dot(TVector a, TVector b)

{

 return a.X*b.X + a.Y*b.Y;

}

// OK

Vector2 vecA{2, 4};

Vector2 vecB{2, 4};

DebugLog(Dot<Vector2, float>(vecA, vecB));

// Compiler error:

//

// Candidate template ignored: constraints not satisfied

// [with TVector = int, TComponent = int]

// TComponent Dot(TVector a, TVector b)

// ^

// test.cpp:60:10: note: because 'IsVector2<int>'

evaluated to false

// requires IsVector2<TVector>

DebugLog(Dot<int, int>(2, 4));

Rather than a language-specified where constraint like we’d use in
C#, we instead specify any compile-time expression after the
keyword requires. In this case we’re using a variable template that
we’ve defaulted to false and then specialized to opt-in the specific
Vector2 type to true.

These compile-time expressions have access to the template
parameters. Like other compile-time expressions, they’re allowed to

be arbitrarily complex. For example, consider this variable template
that doesn’t have a requires clause:

// Variable template

template <typename T, int N>

// Recurse to next-lower value

constexpr T SumUpToN = N + SumUpToN<T, N-1>;

// Specialization for 0 stop recursion

template <typename T>

constexpr T SumUpToN<T, 0> = 0;

// OK

DebugLog(SumUpToN<float, 3>); // 6

// Compile error:

//

// test.cpp:44:28: fatal error: recursive template

instantiation exceeded

// maximum depth of 1024

// constexpr T SumUpToN = N + SumUpToN<T, N-1>;

// ^

// test.cpp:44:28: note: in instantiation of variable

template specialization

// 'SumUpToN<float, -1025>' requested here

// test.cpp:44:28: note: in instantiation of variable

template specialization

// 'SumUpToN<float, -1024>' requested here

// test.cpp:44:28: note: in instantiation of variable

template specialization

// 'SumUpToN<float, -1023>' requested here

// test.cpp:44:28: note: in instantiation of variable

template specialization

// 'SumUpToN<float, -1022>' requested here

// test.cpp:44:28: note: in instantiation of variable

template specialization

// 'SumUpToN<float, -1021>' requested here

//

// ... many more lines of errors

DebugLog(SumUpToN<float, -1>);

To stop that infinite recursion, we can add a requires clause:

template <typename T, int N>

// Constraint to positive values only

requires (N >= 0)

constexpr T SumUpToN = N + SumUpToN<T, N-1>;

template <typename T>

constexpr T SumUpToN<T, 0> = 0;

// OK

DebugLog(SumUpToN<float, 3>); // 6

// Compiler error:

//

// test.cpp:54:14: error: constraints not satisfied for

variable template

// 'SumUpToN' [with T = float, N = -1]

// DebugLog(SumUpToN<float, -1>);

// ^~~~~~~~~~~~~~~~~~~

// test.cpp:42:11: note: because '-1 >= 0' (-1 >= 0)

evaluated to false

// requires (N >= 0)

DebugLog(SumUpToN<float, -1>);

We’ve successfully stopped the infinite recursion before it started
with a requires constraint. The compiler didn’t need to instantiate
thousands of templates and it didn’t print out thousands of error
messages for us to decipher. Instead, we simply get one readable
message telling us that the constraint wasn’t satisfied.

Concepts

So far requires has been a pretty limited tool. That’s because this
isn’t the primary way of using it. Instead, we usually use requires to
define a “concept.” A concept is supposed to be a semantic
description of a category of types. For example, we might define a
Number concept as a type that supports various numeric operators:

template <typename T>

concept Number = requires(T t) {

 t + t;

 t - t;

 t * t;

 t / t;

 -t;

 +t;

 --t;

 ++t;

 t--;

 t++;

};

This is a new use of requires in a couple of ways. First, we’ve
added a parameter list like a function has. This gives us a named
parameter t with the type T matching the template parameter.
Second, we then use that parameter in a book of statements, similar
to what a function is. If those statements compile, the constraint is
satisfied.

Finally, we save the constraint created by requires using the
concept keyword. This gives us a way to name the constraint
elsewhere when we want to use it. All concepts are templates taking
type parameters since their purpose is to categorize types.

Now let’s put the concept to use:

// Function template with two type parameters (the latter

is defaulted)

template <typename TVal, typename TThreshold=TVal>

// Requires clause names concepts

requires Number<TVal> && Number<TThreshold>

// The function

bool IsNearlyZero(TVal val, TThreshold threshold)

{

 return (val < 0 ? -val : val) < threshold;

}

// All of these are OK since double, float, and int

satisfy Number

DebugLog(IsNearlyZero(0.0, 0.1)); // true

DebugLog(IsNearlyZero(0.2f, 0.1f)); // false

DebugLog(IsNearlyZero(2, 1)); // true

struct Player{};

// Compiler error: Player doesn't satisfy the Number

constraint

DebugLog(IsNearlyZero(Player{}, Player{}));

Instead of directly evaluating to a bool, this use of requires names
the Number concept and passes arguments to it: Number<TVal> and
Number<TThreshold>. The requires clause can still perform binary
logic using && and || operators to combine concepts or check bool
values.

There are a few alternate syntaxes we can use. First, we can put the
requires clause after the parameter list:

template <typename TVal, typename TThreshold=TVal>

bool IsNearlyZero(TVal val, TThreshold threshold)

 requires Number<TVal> && Number<TThreshold>

{

 return (val < 0 ? -val : val) < threshold;

}

If we have a trivial requires clause that simply names a single
concept, which is quite typical, we can replace typename with the
name of the concept:

// Trivial concept version (still using typename)

template <typename T>

bool IsNearlyZero(T val, T threshold)

 requires Number<T>

{

 return (val < 0 ? -val : val) < threshold;

}

// Replace typename with concept name

template <Number T>

bool IsNearlyZero(T val, T threshold)

{

 return (val < 0 ? -val : val) < threshold;

}

If we’re using auto parameters to create “abbreviated function
templates,” then we won’t have the template. Instead, we can simply
put the concept name before auto to require that the parameter
satisfy that template:

bool IsNearlyZero(Number auto val, Number auto threshold)

{

 return (val < 0 ? -val : val) < threshold;

}

Regardless of which syntax we choose, the usage is always the
same as the above because all of these are equivalent. The
preference of syntax is mostly a matter of the level of flexibility we
need and of style.

Because this form of requires defines a concept and a concept is
what’s named after the other form of requires, we sometimes use
requires requires to define an ad-hoc concept:

template <typename T>

// Requires clause names ad-hoc concept

requires requires(T t) {

 t + t;

 t - t;

 t * t;

 t / t;

 -t;

 +t;

 --t;

 ++t;

 t--;

 t++;

}

bool IsNearlyZero(T val, T threshold)

{

 return (val < 0 ? -val : val) < threshold;

}

Note that this Number concept is quite incomplete and for example
purposes only. The C++ Standard Library has many well-designed
concepts such as std::integral and std::floating_point that are
suitable for production code.

Combining Concepts

Many concepts are defined in terms of other concepts. Just like how
we used && in our requires clause, we can do the same when
defining a concept:

// Define a concept in terms of another concept and an

ad-hoc concept

template <typename T>

concept Integer = Number<T> && requires(T t) {

 t << t;

 t <<= t;

 t >> t;

 t >>= t;

 t % t;

};

We can also use concepts within the definition of our concepts.
These are known as “nested concepts:”

template <typename T>

concept Vector2 = requires(T t) {

 // Use a concept from within a concept

 // This requires the type of t.X to satisfy the

Number constraint

 Number<decltype(t.X)>;

 // Also require Y to be a Number

 Number<decltype(t.Y)>;

};

struct Vector2f

{

 float X;

 float Y;

};

bool IsOrthogonal(Vector2 auto a, Vector2 auto b)

{

 return (a.X*b.X + a.Y*b.Y) == 0;

}

Vector2f a{0, 1};

Vector2f b{1, 0};

Vector2f c{1, 1};

DebugLog(IsOrthogonal(a, b)); // true

DebugLog(IsOrthogonal(a, c)); // false

Alternately, we can use “compound requirements” to implicitly pass
the type that an expression evaluates to as the first argument to a
concept. Here’s how the Vector2 concept could have used this:

template <typename T>

concept Vector2 = requires(T t) {

 // t.X must evaluate to a type that satisfies the

Number constraint

 {t.X} -> Number;

 {t.Y} -> Number;

};

Overload Resolution

We’ve seen how to use specialization to write custom versions of
templates. This generally works well for particular types such as
float, but it’s difficult to specialize for whole categories of types.
This is where concepts come in. When calling an overloaded
function, the compiler will look at the concepts to find the one that’s
most constrained:

// Incomplete definition of a dynamic array class

struct List

{

 int Length;

 int* Array;

 int* GetBegin()

 {

 return Array;

 }

 int& operator[](int i)

 {

 return Array[i];

 }

};

// Incomplete definition of a linked list class

struct LinkedList

{

 struct Node

 {

 int Value;

 Node* Next;

 };

 Node* Head;

 Node* GetBegin()

 {

 return Head;

 }

};

// A concept that defines types that can be iterated

template <typename T>

concept Iterable = requires(T t) {

 t.GetBegin();

};

// A concept that defines types that can be indexed into

// This is more constrained than just Iterable

template <typename T>

concept Indexable = Iterable<T> && requires(T t) {

 t[0]; // Can read from an index

 t[0] = 0; // Can write to an index

};

// Indexable overload simply indexes: O(1)

int GetAtIndex(Indexable auto collection, int index)

{

 return collection[index];

}

// Iterable version has to walk the list: O(N)

int GetAtIndex(Iterable auto collection, int index)

{

 auto cur = collection.GetBegin();

 for (int i = 0; i < index; ++i)

 {

 cur = cur->Next;

 }

 return cur->Value;

}

// Overload resolution calls the Indexable version

List list;

int a = GetAtIndex(list, 1000);

// Overload resolution calls the Iterable version

LinkedList linkedList;

int b = GetAtIndex(linkedList, 1000);

C# Equivalency

Now that we know how constraints work in C++, let’s see how we’d
approximate each of the 11 where constraints that C# offers. To do
this, we’ll use some pre-defined concepts out of the C++ Standard
Library’s <concepts> header and a variable template out of
<type_traits> rather than writing our own versions of these.

C#
Constraint C++ Concept (approximation)

where T :
struct

template <class T> concept C =
std::is_class_v<T>;

where T :
class

template <class T> concept C1 = !Nullable<T>
&& std::is_class_v<T>

where T :
class?

template <class T> concept C =
std::is_class_v<T>;

where T :
notnull

template <class T> concept C = !Nullable<T>;

where T :
unmanaged N/A. All C++ types are unmanaged.

where T :
new()

std::default_initializable<T>

where T :
BaseClass

template <class T> concept C = !Nullable<T> &&
std::derived_from<T, BaseClass>;

where T :
BaseClass?

std::derived_from<T, BaseClass>

where T :
Interface

template <class T> concept C = !Nullable<T> &&
std::derived_from<T, BaseClass>;

C#
Constraint C++ Concept (approximation)

where T :
Interface?

std::derived_from<T, BaseClass>

where T : U std::derived_from<T, U>

In the table above, std::derived_from and
std::default_initializable are concepts and std::is_class_v is
a bool variable template. Nullable isn't in the C++ Standard Library,
but it might look like this:

template <class T> concept Nullable =

 // Can assign nullptr to it

 requires(T t) { t = nullptr; } &&

 // Has a user-defined conversion operator to nullptr

or is a pointer

 (requires(T t) { t.operator decltype(nullptr)(); } ||

std::is_pointer_v<T>);

This, and some of the other concepts, are approximations of their C#
equivalents. C++ doesn't have exact matches for C# "nullable
contexts" and other subtle language differences. Feel free to adjust
these concepts to suit your intended usage.

Conclusion

C++ constraints provided by requires and concept fill a similar role
to C# constraints provided by where. As is often the case when
comparing the two languages, the C++ version is essentially a
superset of the C# functionality. While some concepts are provided
by the C++ Standard Library via the <concepts> header, we're also
given the tools to write our own concepts as we did above with
Nullable and others.

The constraints we create allow us to limit what our templates are
allowed to work on, express that intent to users of our templates,
generate much more readable compiler errors, and even choose the
most optimal overloaded function.

This is in contrast to C# constraints that enable our generics to use
more functionality of their type parameters. Because only 11 basic
constraints are provided with no ability for us to create our own
constraints, we're often forced into trade-offs such as taking a
performance hit due to calling functions on an interface, creating
garbage due to boxing to a reference type, or jumping through hoops
to write generic code.

https://jacksondunstan.com/articles/5520

30. Type Aliases

Typedef

There are two main ways of creating type aliases in C++. The first,
typedef, is inherited from C. It’s still common to see in C++
codebases, but later in the chapter we’ll learn another approach
that’s essentially a complete replacement for typedef.

To create an alias this way, we write typedef SourceType
AliasName;:

// Create an alias of "unsigned int" called "uint32"

typedef unsigned int uint32;

// Use the "uint32" alias in place of "unsigned int"

constexpr uint32 ZERO = 0;

C# using X = Y; aliases can only appear in two places. If they’re
placed at the start of a .cs file, they’re in scope in that file. If they’re
placed in a namespace block, they’re in scope in that block. This
means they’re never usable in other namespace blocks or other files.

C++ type aliases work differently. They can be added to other kinds
of scopes and used across files:

////////////

// Math.h //

////////////

namespace Integers

{

 // Add a "uint32" alias for "unsigned int" in the

Integers namespace

 typedef unsigned int uint32;

}

// Use "uint32" like any other member of the Integers

namespace

constexpr Integers::uint32 ZERO = 0;

////////////

// Game.h //

////////////

// Include header file to get access to the Integers

namespace and ZERO

#include "Math.h"

constexpr Integers::uint32 MAX_HEALTH = 100;

//////////////

// Game.cpp //

//////////////

// Include header file to get access to Integers, ZERO,

and MAX_HEALTH

#include "Game.h"

DebugLog(ZERO); // 0

DebugLog(MAX_HEALTH); // 100

// The type alias is usable here, too

for (Integers::uint32 i = 0; i < 3; ++i)

{

 DebugLog(i); // 0, 1, 2

}

This example added a type alias to a namespace, but we can add
them to almost any kind of scope. For example, we might add an
alias to just a single function:

void Foo()

{

 // Type alias scoped to just one function

 typedef unsigned int uint32;

 for (uint32 i = 0; i < 3; ++i)

 {

 DebugLog(i); // 0, 1, 2

 }

}

Or even a block within a function:

void Foo()

{

 {

 // Type alias scoped to just one function

 typedef unsigned int uint32;

 for (uint32 i = 0; i < 3; ++i)

 {

 DebugLog(i); // 0, 1, 2

 }

 }

 // Compiler error: type alias is only visible in the

above block

 uint32 x = 0;

}

It’s also common to see type aliases added as members of classes:

struct Player

{

 // Player::HealthType is now an alias for "unsigned

int"

 typedef unsigned int HealthType;

 // We can use it here without the namespace qualifier

 HealthType Health = 0;

};

// We can use it outside of the class by adding the

namespace qualifier

void ApplyDamage(Player& player, Player::HealthType

amount)

{

 player.Health -= amount;

}

This approach is particularly useful when we think we might change
the type of Health later on. We can simply update the typedef line to
typedef unsigned long long int HealthType; and the types of
Health and amount will both be changed. In a larger project, this
might save us from having to update hundreds or thousands of
types.

It’s important to remember that, like C# type aliases, these typedef
statements don’t create new types. When we use uint32, it’s exactly
the same as if we used unsigned int. The alias we create is exactly
that: another way to refer to the same type.

In addition to the simple typedef statements we’ve used so far, we
can also write a couple kinds of more complex statements. First, we
can make more than one alias in a single statement. This works
similarly to declaring multiple variables at once:

// Create four type aliases:

// 1) "Int" for "int"

// 2) "IntPointer" for "int*" a.k.a. "a pointer to an

int"

// 3) "FunctionPointer" for "int (&)(int, int)"

// a.k.a. "reference to function that takes two ints

and returns an int"

// 4) "IntArray" for "int[2]" a.k.a "an array of two

ints"

typedef int Int, *IntPointer, (&FunctionPointer)(int,

int), IntArray[2];

Int one = 1;

DebugLog(one); // 1

IntPointer p = &one;

DebugLog(*p); // 1

int Add(int a, int b)

{

 return a + b;

}

FunctionPointer add = Add;

DebugLog(add(2, 3)); // 5

IntArray array = { 123, 456 };

DebugLog(array[0], array[1]); // 123, 456

Second, typedef is sometimes used to create struct types. This is a
hold-over from C that’s not necessary in C++, but some legacy code
may still do this and it’s supported for backwards-compatibility
reasons. This is valid C and C++:

// C code

// Create two type aliases:

// 1) "Player" for "struct { int Health; int Speed; }"

// 2) "PlayerPointer" for "Player*" a.k.a. "pointer to

Player"

typedef struct

{

 int Health;

 int Speed;

} Player, *PlayerPointer;

Player p;

p.Health = 100;

p.Speed = 10;

DebugLog(p.Health, p.Speed); // 100, 10

PlayerPointer pPlayer = &p;

DebugLog(pPlayer->Health, pPlayer->Speed); // 100, 10

Without the typedef, C code would be forced to prefix Player with
struct like this:

// C code

struct Player

{

 int Health;

 int Speed;

};

struct Player p; // C requires "struct" prefix

p.Health = 100;

p.Speed = 10;

DebugLog(p.Health, p.Speed); // 100, 10

Again, neither the struct prefix nor the typedef workaround are
necessary in C++. It’s just important to know why typedef is used
like this since it’s still commonly seen in C++ codebases.

Using Aliases

Since C++11, typedef is no longer the preferred way of creating type
aliases. The new way looks a lot more like C#’s using X = Y;. Note
that the order of the alias and the type has reversed compared to
typedef:

// Create an alias of "unsigned int" called "uint32"

using uint32 = unsigned int;

// Use the "uint32" alias in place of "unsigned int"

constexpr uint32 ZERO = 0;

We’re simply listing the type name on the right side. This is
particularly more readable than typedef for some of the more
complex types we’ve seen since the alias name isn’t mixed in with
the type being aliased:

// Alias for a pointer to an int

using IntPointer = int*;

// Alias for a function that takes two ints and returns

an int

using FunctionPointer = int (*)(int, int);

// Alias for an array of two int elements

using IntArray = int[2];

This syntax is exactly equivalent to a typedef. Both create an alias to
the original type, not a new type. Both can appear in global,
namespace, function, or function block scope. Most programmers
find this form more readable since it mimics the form of variable
assignment and separates the alias from the original type with an =.

Multiple aliases can’t be created in one statement with using. This is
probably for the best as that typedef syntax is relatively difficult to
read and seldom used:

// Compiler error: can only create one alias at a time

using uint32 = unsigned int, f32 = float;

Besides these syntactic advantages, using has an functional
improvement as well: we can create alias templates. Consider this
code that doesn’t make use of alias templates:

// Namespace with a class template

namespace Math

{

 template <typename TComponent>

 struct Vector2

 {

 TComponent X;

 TComponent Y;

 };

}

// Another namespace with a class template

namespace Collections

{

 template <typename TKey, typename TValue>

 struct HashMap

 {

 // ... implementation

 };

}

// Type names start getting long

Collections::HashMap<int32_t, Math::Vector2<float>>

playerLocations;

Collections::HashMap<int32_t, Math::Vector2<int32_t>>

playerScores;

// Shortening requires an alias for each template

instantiation

using vec2f = Math::Vector2<float>;

using vec2i32 = Math::Vector2<int32_t>;

Collections::HashMap<int32_t, vec2f> playerLocations;

Collections::HashMap<int32_t, vec2i32> playerScores;

Now consider if we do have access to alias templates:

// Template of a type alias

// Takes two type parameters: TKey and TValue

template <typename TKey, typename TValue>

using map = Collections::HashMap<TKey, TValue>; // Can

use parameters in alias

template <typename TComponent>

using vec2 = Math::Vector2<TComponent>;

// Pass arguments to the aliases just like any other

template

map<int32_t, vec2<float>> playerLocations;

map<int32_t, vec2<int32_t>> playerLocations;

// We can still create non-template type aliases to get

more specific

using vec2f = vec2<float>;

using vec2i32 = vec2<int32_t>;

map<int32_t, vec2f> playerLocations;

map<int32_t, vec2i32> playerScores;

// And even more specific...

using LocationMap = map<int32_t, vec2f>;

using ScoreMap = map<int32_t, vec2i32>;

LocationMap playerLocations;

ScoreMap playerScores;

Alias templates give us a tool to keep some of the type parameters
without being forced to alias a concrete type. These templates can
be reused, as we did with both map and vec, rather than duplicating
aliases. This becomes more and more useful as types become more
complicated and generic.

These alias templates inherit all the functionality of other kinds of
templates, such as for functions and classes. For example, we can

use non-type parameters:

// Class template for a fixed-length array

template <typename TElement, int N>

struct FixedList

{

 int Length = N;

 TElement Elements[N];

 TElement& operator[](int index)

 {

 return Elements[index];

 }

};

// Alias template taking a non-type parameter: int N

template <int N>

using ByteArray = FixedList<unsigned char, N>;

// Pass a non-type argument to the alias template: <3>

ByteArray<3> bytes;

bytes[0] = 10;

bytes[1] = 20;

bytes[2] = 30;

DebugLog(bytes.Length, bytes[0], bytes[1], bytes[2]); //

3, 10, 20, 30

Permissions

Lastly, and quickly, there’s one final use for type aliases. As we’ve
seen before, class permissions like private can be used to prevent
code outside of the class from using certain members. This applies
to types that the class creates:

class Outer

{

 // Member type that is private, the default for

"class"

 struct Inner

 {

 int Val = 123;

 };

};

// Compiler error: Inner is private

Outer::Inner inner;

Type aliases can be used to avoid this restriction. This works
because the compiler only checks the permissions of the type being
used. If that type is an alias for another type, the aliased type’s
permission is irrelevant and ignored:

class Outer

{

 // Member type is still private

 struct Inner

 {

 int Val = 123;

 };

public:

 // Type alias is public

 using InnerAlias = Inner;

};

// OK: uses permission level of InnerAlias, not Inner

Outer::InnerAlias inner;

Usually we’ll just specify the desired permission level to begin with.
In cases such as using third-party libraries, we don’t have the ability
to change that original permission level. This workaround can be
used to get the access we need.

Conclusion

Type aliases in C++ go way beyond their C# counterparts. They’re
not limited to a single source code file or namespace block. Instead,
we can and commonly do declare them in header files as globals, in
namespaces, and as class members. We declare terse names in
functions or even blocks in functions to avoid a lot of type verbosity,
especially when using generic code such as a HashMap<TKey,
TValue>. These aliases can be created once and shared across the
whole project, not just within one file.

Alias templates go even further by allowing us to create aliases that
don’t resolve to a concrete type. These can prevent a lot of code
duplication and give names to in-between steps such as map that
lives between the very generic HashMap<TKey, TValue> and the very
concrete LocationMap. They inherit the powers of other C++
templates with capabilities including non-type parameters and
variable numbers of parameters.

31. Deconstructing and Attributes

Structured Bindings

“Deconstructing” in C# is the process by which we extract the fields
out of a struct or class and into individual variables. It looks like this:

// C#

// A type we want to deconstruct

struct Vector2

{

 public float X;

 public float Y;

 // Create a Deconstruct method that takes an 'out'

param for each variable

 // to deconstruct into and returns void

 public void Deconstruct(out float x, out float y)

 {

 x = X;

 y = Y;

 }

}

// Instantiate the deconstructable type

var vec = new Vector2{X=2, Y=4};

// Deconstruct. Implicitly calls vec.Deconstruct(out x,

out y).

// x is a copy of vec.X and y is a copy of vec.Y

var (x, y) = vec;

DebugLog(x, y); // 2, 4

In C++ terminology, we don’t “deconstruct” but rather “create
structured bindings.” Here’s the equivalent code:

// A type we want to create structured bindings for

struct Vector2

{

 float X;

 float Y;

};

// Instantiate that type

Vector2 vec{2, 4};

// Create structured bindings. x is a copy of vec.X and y

is a copy of vec.Y.

auto [x, y] = vec;

DebugLog(x, y); // 2, 4

So far it’s essentially the same in the two language except for two
changes. First, C++ uses square brackets ([x, y]) instead of

parentheses ((x, y)). Second, C++ doesn’t require us to write a
Deconstruct function. Instead, the compiler simply uses the
declaration order of the fields of Vector2 so that x lines up with X and
y with Y. This mirrors initialization where Vector2{2, 4} initializes the
data members in declaration order: X then Y.

This can be customized to by “tuple-like” types, but it takes more
work than in C#:

struct Vector2

{

 float X;

 float Y;

 // Get a data member of a const vector

 template<std::size_t Index>

 const float& get() const

 {

 // Assert the only two valid indices

 static_assert(Index == 0 || Index == 1);

 // Return the right one based on the index

 if constexpr(Index == 0)

 {

 return X;

 }

 return Y;

 }

 // Get a data member of a non-const vector

 template <std::size_t Index>

 float& get()

 {

 // Cast to const so we can call the const

overload of this function

 // to avoid code duplication

 const Vector2& constThis = const_cast<const

Vector2&>(*this);

 // Call the const overload of this function

 // Returns a const reference to the data member

 const float& constComponent =

constThis.get<Index>();

 // Cast the data member to non-const

 // This is safe since we know the vector is non-

const

 float& nonConstComponent = const_cast<float&>

(constComponent);

 // Return the non-const data member reference

 return nonConstComponent;

 }

};

// Specialize the tuple_size class template to derive

from integral_constant

// Pass 2 since Vector2 always has 2 components

template<>

struct std::tuple_size<Vector2> :

std::integral_constant<std::size_t, 2>

{

};

// Specialize the tuple_element struct to indicate that

index 0 of Vector2 has

// the type 'float'

template<>

struct std::tuple_element<0, Vector2>

{

 // Create a member named 'type' that is an alias for

'float'

 using type = float;

};

// Same for index 1

template<>

struct std::tuple_element<1, Vector2>

{

 using type = float;

};

// Usage is the same

Vector2 vec{2, 4};

auto [x, y] = vec;

DebugLog(x, y);

The result of the above code is that Vector2 is now a “tuple-like”
type, usable with structured bindings and several generic algorithms
of the C++ Standard Library.

The final kind of object we can create structured bindings for is an
array. This isn’t allowed by default in C#:

// Create an array of two int elements

int arr[] = { 2, 4 };

// Create structured bindings. x is a copy of arr[0] and

y is a copy of arr[1].

auto [x, y] = arr;

DebugLog(x, y); // 2, 4

It’s important to note that the structured bindings we’ve been
creating have to be automatically-typed with auto. Even if we know
the type, we can’t use it:

int arr[] = { 2, 4 };

// Compiler error: must use the 'auto' type here

int [x, y] = arr;

What we are allowed to do is create structured binding references
with auto&:

int arr[] = { 2, 4 };

// Create copies of arr[0] and arr[1]

auto [xc, yc] = arr;

// Create references to arr[0] and arr[1]

auto& [xr, yr] = arr;

// Modify the elements of the array

arr[0] = 20;

arr[1] = 40;

DebugLog(xc, yc); // 2, 4

DebugLog(xr, yr); // 20, 40

The same is also true for rvalue references via auto&&:

Vector2 Add(Vector2 a, Vector2 b)

{

 return Vector2{a.X+b.X, a.Y+b.Y};

}

// Compiler error: return value of Add isn't an lvalue so

can't take lvalue ref

auto& [x, y] = Add(Vector2{2, 4}, Vector2{6, 8});

// OK

auto&& [x, y] = Add(Vector2{2, 4}, Vector2{6, 8});

DebugLog(x, y); // 8, 12

Both forms of references as well as copies may also be const:

Vector2 vec{2, 4};

// Constant copy

const auto [xc, yc] = vec;

// Constant lvalue reference

const auto& [xr, yr] = vec;

// Constant rvalue reference

const auto&& [xrr, yrr] = Add(Vector2{2, 4}, Vector2{6,

8});

We can also use other forms of initialization when creating structured
bindings. So far we’ve copy-initialized our variables with = but we
can also direct-initialize them with {} and ():

Vector2 vec{2, 4};

// Copy-initialize

auto [x1, y1] = vec;

// Direct-initialize with curly braces

auto [x2, y2]{vec};

// Direct-initialize with parentheses

auto [x3, y3](vec);

Finally, C# supports ignoring some deconstructed variables with
“discards” in the form of _. This isn’t supported in C++, so we’ll need
to explicitly name and ignore them to avoid a compiler warning:

Vector2 vec{2, 4};

auto [x, y] = vec;

static_cast<void>(x); // One way of explicitly ignoring x

(void)x; // Another way of ignoring x

// Use only y

DebugLog(y); // 4

Attributes

C# attributes associate some metadata with an entity like a class, a
method, or a parameter. This metadata can be used in one of two
ways. First, the compiler can query attributes like
[MethodImplAttribute(MethodImplOptions.AggressiveInlining)]
to modify how compilation works. Second, our C# code can query
attributes at runtime via reflection to make use of it in various custom
ways.

As C++ doesn’t support reflection, it’s usage of attributes doesn’t
cover the runtime use cases. It does, however, cover the compile-
time use cases. Because this functionality is implemented by the
compiler, not us, we can’t create custom attributes. Instead, we use
two built-in sets of attributes. First, there are several attributes
defined by the C++ language:

Attribute Version Meaning

[[noreturn]] C++11 This function will never return

[[carries_dependency]] C++11
Unnecessary memory fence
instructions for this can be
removed in some situations

[[deprecated]] C++14 This is deprecated

[[deprecated("why")]] C++14 This is deprecated for a
specific reason

[[fallthrough]] C++17
This case in a switch
intentionally falls through to
the next case

[[nodiscard]] C++17 A compiler warning should be
generated if this is ignored

Attribute Version Meaning

[[nodiscard("msg")]] C++20
A compiler warning with a
particular message should be
generated if this is ignored

[[maybe_unused]] C++17
No compiler warning should
be generated for not using
this

[[likely]] C++20 This branch is likely to be
taken

[[unlikely]] C++20 This branch is unlikely to be
taken

[[no_unique_address]] C++20
This non-static data member
doesn’t need to have a
unique memory address

There are two aspects of these to take notice of. First, and trivially,
C++ attributes use two square brackets ([[X]]) instead of one in C#
([X]). Second, all of the attributes are for one of two purposes:
controlling compiler warnings and optimizing generated code.

The second set of attributes is compiler-specific and not part of the
C++ standard. Clang, for example, has a ton of them for various
purposes. If these are ever specified and the compiler doesn’t
support them, the’re simply ignored.

Now let’s look at some code that uses them:

class File

{

 FILE* handle = nullptr;

https://clang.llvm.org/docs/AttributeReference.html

public:

 ~File()

 {

 if (handle)

 {

 ::fclose(handle);

 }

 }

 // Generate a compiler warning if the return value is

ignored

 [[nodiscard]] bool Close()

 {

 if (!handle)

 {

 return true;

 }

 return ::fclose(handle) == 0;

 }

 // Generate a compiler warning if the return value is

ignored

 [[nodiscard]] bool Open(const char* path, const char*

mode)

 {

 if (!handle)

 {

 // No compiler warning because return value

is used

 if (!Close())

 {

 return false;

 }

 }

 handle = ::fopen(path, mode);

 return handle != nullptr;

 }

};

File file{};

// Compiler warning: return value ignored

file.Open("/path/to/file", "r");

// Compiler warning: unused variable

bool success = file.Open("/path/to/file", "r");

// No compiler warning: suppress the unused variable

[[maybe_unused]] bool success =

file.Open("/path/to/file", "r");

// No compiler warning because return value is used

if (!file.Open("/path/to/file", "r"))

{

 DebugLog("Failed to open file");

}

To use more than one attribute at a time, add commas like when
declaring multiple variables at a time:

// Both [[deprecated("why")]] and [[nodiscard]]

[[deprecated("Wasn't very good. Use Hash2() instead."),

nodiscard]]

uint32_t Hash(const char* bytes, std::size_t size)

{

 uint32_t hash = 0;

 for (std::size_t i = 0; i < size; ++i)

 {

 hash += bytes[i];

 }

 return hash;

}

For attributes in namespaces, such as provided by compilers, we
use the familiar scope resolution operator (::) to refer to them:

// Use the "nodebug" attribute in the "gnu" namespace

// Do not generate debugging information for this

function

[[gnu::nodebug]]

float Madd(float a, float b, float c)

{

 return a * b + c;

}

When using multiple attributes in namespaces, there’s a shortcut
since C++17 that avoids duplicating the namespace name:

// Both [[gnu::returns_nonnull]] and [[gnu::nodebug]]

[[using gnu: returns_nonnull, nodebug]]

void* Allocate(std::size_t size)

{

 if (size < 4096)

 {

 return SmallAlloc(size);

 }

 return BigAlloc(size);

}

Attributes can appear in a great many places in C++: variables,
functions, names, blocks, return values, and so forth. If adding the
attribute makes logical sense, it’s probably allowed.

Conclusion

C++ structured bindings are a different take on C#’s deconstructing.
We don’t need to write any code at all to create structured bindings
for structs and arrays. For tuple-like types, we have to write quite a
bit more than a Deconstruct method in C#. Thankfully, that’s rarely
needed due to the presence of the std::tuple class template in the
Standard Library which is obviously tuple-like and therefore supports
deconstructing.

C++ attributes are one of the rare areas of the language that’s
actually less powerful than its C# counterpart. It fulfills compile-time
purposes such as by controlling warnings and optimization, but it
doesn’t support any run-time use cases due to the lack of reflection
in the language. Third-party libraries (example) are required to add
on run-time reflection if needed, but they’re not integrated into the
core language. This may change in C++23 or another future version
as there has been much work on integrating compile-time reflection
into the language.

https://www.rttr.org/

32. Thread-Local Storage and Volatile

Thread-Local Storage

Thread-Local Storage is a way of storing one variable per thread.
Both C# and C++ have support for this. In C#, we add the
[ThreadStatic] attribute to a static field. A common bug results
from the field’s initializer being run only once, like other static fields,
not once per thread.

// C#

public class Counter

{

 // One int stored per thread

 // Initialized once, not one per thread

 [ThreadStatic] public static int Value = 1;

}

Action a = () => DebugLog(Counter.Value);

Thread t1 = new Thread(new ThreadStart(a));

Thread t2 = new Thread(new ThreadStart(a));

t1.Start();

t2.Start();

t1.Join();

t2.Join();

// First thread runs and the first use of Counter

initializes Value to 1

// Second thread runs and doesn't initialize Value. Uses

the default of 0.

// Output: 1 then 0

C++ uses the keyword thread_local instead of an attribute. This
keyword can be applied to static data members like in C#. It can also
be applied to variables at global scope, namespace scope, or any
level of block scope:

// Global variable

thread_local int global = 1;

namespace Counters

{

 // Namespace variable

 thread_local int ns = 1;

}

struct Counter

{

 // Static data member

 // Inline initialization isn't allowed for non-const

static data members

 static thread_local int member;

};

// Initialization outside the class is OK

thread_local int Counter::member = 1;

void Foo()

{

 // Local variable

 thread_local int local = 1;

 {

 // Variable in any nested block

 thread_local int block = 1;

 }

}

Additionally, thread_local variables can be marked static or extern
to control linkage:

// Globals can be static or extern

static thread_local int global1 = 1;

extern thread_local int global2 = 2;

namespace Counters

{

 // Namespace variables can be static or extern

 static thread_local int ns1 = 1;

 extern thread_local int ns2 = 2;

}

void Foo()

{

 // Local variables can be static, but not extern

 static thread_local int local = 1;

 {

 // Nested block variables can be static, but not

extern

 static thread_local int block = 1;

 }

}

Note that static doesn’t affect their storage duration. All
thread_local variables are allocated and initialized when the thread
begins. The exact order of initialization isn’t specified, so it shouldn’t
be relied on. This is a change from C# where the intialization doesn’t
occur per-thread at all.

// Initialized for each thread, not just once as in C#

static thread_local int counter = 1;

auto a = []{ DebugLog(counter); };

std::thread t1{a};

std::thread t2{a};

t1.join();

t2.join();

// First thread runs and the initializes counter to 1

// Second thread runs and the initializes counter to 1

// Output: 1 then 1

If initialization throws an exception, std::terminate is called to shut
down the program.

struct Throws

{

 Throws()

 {

 throw 123;

 }

};

// Initializing throws an exception which calls

std::terminate

static thread_local Throws t{};

Thread-local variables are deallocated and de-initialized when the
thread ends:

struct LogLifecycle

{

 int Value = 1;

 LogLifecycle()

 {

 DebugLog("ctor");

 }

 ~LogLifecycle()

 {

 DebugLog("dtor");

 }

};

thread_local LogLifecycle x{};

auto a = []{ DebugLog(x.Value); };

std::thread t1{a};

std::thread t2{a};

t1.join();

t2.join();

// Possible annotated output, depending on thread

execution order:

// ctor // first thread initializes x

// ctor // second thread initializes x

// 1 // first thread prints x.Value

// dtor // first thread de-initializes x

// 1 // second thread prints x.Value

// dtor // second thread de-initializes x

Any such per-thread initialization and de-initialization needs to be
implemented manually in C#.

Volatile

C# and C++ both have a volatile keyword, but the meaning is
different between the languages. In C#, volatile is intended to be
used for thread synchronization. It guarantees atomic reads and
writes to volatile variables, meaning they can’t be interrupted by
other threads. In order to guarantee atomicity, only certain types can
be volatile in C#:

Reference types such as class instances
Generic type parameters that are reference types such as class
instances
Pointers
sbyte, byte, short, ushort, int, uint, char, float, and bool
Enums based on byte, sbyte, short, ushort, int, and uint
IntPtr and UIntPtr

All other types, including double, long, and all structs, can’t be
volatile:

// C#

public class Name

{

 public string First;

 public string Last;

}

public struct IntWrapper

{

 public int Value;

}

public enum IntEnum : int

{

}

public enum LongEnum : long

{

}

unsafe public class Volatiles<T>

 where T : class

{

 // OK: reference type

 volatile Name RefType;

 // OK: type parameter known to be a reference type

due to where constraint

 volatile T TypeParam;

 // OK: pointer

 volatile int* Pointer;

 // OK: permitted primitive type

 volatile int GoodPrimitive;

 // Compiler error: denied primitive type

 volatile long BadPrimitive;

 // OK: enum based on permitted primitive type

 volatile IntEnum GoodEnum;

 // Compiler error: enum based on denied primitive

type

 volatile LongEnum BadEnum;

 // Compiler error: structs can't be volatile

 // No exception for structs that only have one field

that can be volatile

 volatile IntWrapper Struct;

 // OK: Special-case for IntPtr and UIntPtr structs

 volatile IntPtr SpecialPtr1;

 volatile UIntPtr SpecialPtr2;

}

The only variables that can be volatile in C# are fields of classes
and structs. Local variables and parameters can’t be volatile.

C# also implicitly adds memory fences to disable instruction
reordering and data caching that might be performed by CPUs that
execute “out of order.” An “acquire fence” is inserted for every read
of the volatile variable and a “release fence” is inserted for every
write:

// C#

public struct Counter

{

 public volatile int Value;

 public void Increment()

 {

 // Reads get an implicit acquire fence

 int cur = this.Value; // acquire-fenced

 int next = cur + 1;

 // Writes get an implicit release fence

 this.Value = next; // release-fenced

 }

}

C++, on the other hand, implements volatile differently. The
keyword is the same, but it’s not meant to be used for thread
synchronization. Instead, it’s meant to implement memory-mapped
hardware access:

// The hardware device reports its status with a 32-bit

integer

enum class DeviceStatus : int32_t

{

 OK = 0,

 Stuck = 1,

 Fault = 2,

};

// "Pointer to a volatile DeviceStatus"

// It's stored at a fixed location: the memory-mapped

address

volatile DeviceStatus* pDeviceStatus = (volatile

DeviceStatus*)100;

while (true)

{

 // Read and print the device status

 DebugLog("Device status:", *pDeviceStatus);

 // Wait for one second

 std::this_thread::sleep_for(std::chrono::seconds{1});

}

The volatile keyword is applied here to the DeviceStatus that
pDeviceStatus points to. This tells the compiler that it cannot
assume that it has full visibility into the readers and writers of that
32-bit integer. It has to assume that it may be accessed externally,
such as when a device driver writes the device’s status to memory
address 100.

As a consequence, the compiler isn’t allowed to “optimize” our loop
like this:

// Only read the pointer once

// Store it as a local variable, likely backed by a

register

DeviceStatus status = *pDeviceStatus;

while (true)

{

 // Print the device status from the local variable

 // No chance of a cache miss!

 DebugLog("Device status:", status);

 // Wait for one second

 std::this_thread::sleep_for(std::chrono::seconds{1});

}

The above “optimization” makes the code faster because there’s no
chance of a cache miss when reading through the pDeviceStatus
pointer. The status is just read once and stored in a CPU register,
which is essentially free to read from. The compiler can’t see the
kernel driver’s writes to memory address 100, so it can assume this
is a safe optimization.

The only problem is that the device status that we log can no longer
change. By marking the value that pDeviceStatus points to as
volatile, the compiler is prohibited from making this optimization. It
has to assume that there’s an external writer that might change the
device status.

Another effect of volatile is that the compiler isn’t allowed to
reorder reads and writes to volatile variables with respect to other
volatile variables:

// Status from the device

enum class DeviceStatus : int32_t

{

 OK = 0,

 Stuck = 1,

 Fault = 2,

 CommandAccepted = 3,

 CommandRejected = 4,

};

// Commands to the device

enum class DeviceCommand : int32_t

{

 Retry = 1,

};

// Memory-mapped device I/O

volatile DeviceStatus* pDeviceStatus = (volatile

DeviceStatus*)100;

volatile DeviceCommand* pDeviceCommand = (volatile

DeviceCommand*)200;

while (true)

{

 if (*pDeviceStatus == DeviceStatus::Stuck) // read

 {

 *pDeviceCommand = DeviceCommand::Retry; // write

 while (*pDeviceStatus !=

DeviceStatus::CommandAccepted) // read

 {

 }

 if (*pDeviceStatus ==

DeviceStatus::CommandRejected || // read

 *pDeviceStatus == DeviceStatus::Stuck) //

read

 {

 throw std::runtime_error{"Failed to get

device un-stuck"};

 }

 }

 // Wait for one second

 std::this_thread::sleep_for(std::chrono::seconds{1});

}

Without volatile, the compiler would be free to reorder these reads
and writes so long as it obeys the “as-if” rule where the code works
“as if” the compiler hadn’t done the reordering. Here’s how that might
look:

// Memory-mapped device I/O without volatile

DeviceStatus* pDeviceStatus = (DeviceStatus*)100;

DeviceCommand* pDeviceCommand = (DeviceCommand*)200;

while (true)

{

 if (*pDeviceStatus == DeviceStatus::Stuck)

 {

 // Read status first

 DeviceStatus status = *pDeviceStatus;

 // Write command second

 *pDeviceCommand = DeviceCommand::Retry;

 // Check status

 while (status != DeviceStatus::CommandAccepted)

 {

 status = *pDeviceStatus;

 }

 if (*pDeviceStatus ==

DeviceStatus::CommandRejected || // read

 *pDeviceStatus == DeviceStatus::Stuck) //

read

 {

 throw std::runtime_error{"Failed to get

device un-stuck"};

 }

 }

 // Wait for one second

 std::this_thread::sleep_for(std::chrono::seconds{1});

}

In this non-volatile version, the compiler has decided that we
should read the status before we write the command. This might
cause us to read and old CommandRejected status for a prior
command and then throw an exception even when our Retry

command was accepted. By applying the volatile keyword, we
disable such reordering and guarantee that our volatile reads and
writes occur in the order they’re written in.

So far we haven’t seen any guarantees from C++ that volatile
reads and writes are atomic or fenced, as they are in C#. That’s
because this is simply not the case in C++. This is a critical
difference that has implications for how they’re used in situations
such as multi-threading and for their performance.

Due to this lack of an atomicity guarantee, any type may be volatile
in C++. There’s no need to prohibit structs, double, and long just
because accessing them might not be atomic. As we’ve already
seen, pointers (and references) to volatile variables can also be
taken:

struct Vector3d

{

 double X;

 double Y;

 double Z;

};

volatile Vector3d V{2, 4, 6}; // Struct

volatile uint64_t L; // Long

volatile double D; // Double

volatile int A[1000]; // Array

Additionally, any variable can be volatile in C++. We’re not limited
to just data members. We can make local variables, nested block
variables, parameters, globals, and namespace members volatile:

volatile int global;

namespace Volatiles

{

 volatile int ns;

}

void Foo(volatile int param)

{

 volatile int local;

 {

 volatile int block;

 }

}

The volatile keyword is a “type qualifier” like const. The shorthands
“cv” and “cv-qualified” are commonly used to talk about these two
qualifiers. Like const, a non-volatile type may be implicitly treated
as a volatile type but not the other way around. The same goes for
non-volatile const types being treated as const and volatile
types:

int nc_nv = 100;

const int c_nv = 200;

volatile int nc_v = 300;

const volatile int c_v = 400;

{

 int& i1 = nc_nv; // OK

 int& i2 = c_nv; // Compiler error: removes const

 int& i3 = nc_v; // Compiler error: removes volatile

 int& i4 = c_v; // Compiler error: removes const and

volatile

}

{

 const int& i1 = nc_nv; // OK

 const int& i2 = c_nv; // OK

 const int& i3 = nc_v; // Compiler error: removes

volatile

 const int& i4 = c_v; // Compiler error: removes

volatile

}

{

 volatile int& i1 = nc_nv; // OK

 volatile int& i2 = c_nv; // Compiler error: removes

const

 volatile int& i3 = nc_v; // OK

 volatile int& i4 = c_v; // Compiler error: removes

const

}

{

 const volatile int& i1 = nc_nv; // OK

 const volatile int& i2 = c_nv; // OK

 const volatile int& i3 = nc_v; // OK

 const volatile int& i4 = c_v; // OK

}

The general rule here is that we can treat variables as “more const”
or “more volatile” but not “less const” or “less volatile” since this
would remove important restrictions.

Note that the mutable keyword we apply to data members is not a
type qualifier like const. It is instead a “storage-class-specifier” like
static, extern, or register, and thread_local that only applies to
data members. That’s why we can’t declare a local or global variable
with type mutable int like we can with const int.

Conclusion

Both languages have thread-local storage and a volatile keyword,
but they have significant differences. Thread-local storage in C++
can be applied to more kinds of variables, such as locals and
globals. It also guarantees per-thread initialization where C# only
initializes once ever. It also features de-initialization when the thread
terminates. C# code needs to manually implement both per-thread
initialization and per-thread de-initialization.

As for the volatile keyword, it’s intended usage and implementation
varies significantly between C# and C++. In C#, we get guaranteed
atomic accesses and memory fences which is great for
synchronizing multiple threads. In C++, we just disable some
compiler optimizations that would get in the way of memory-mapped
I/O. Thread synchronization is usually solved with other tools, such
as mutexes and the Standard Library’s std::atomic class template.
Due to the identical naming of the keyword in both languages, many
programmers assume identical functionality. It’s important to know
that this is not the case and to use the keyword appropriately in each
language.

33. Alignment, Assembly, and Language
Linkage

Alignof

Let’s start with a simple operator: alignof. We specify a type and it
evaluates to a std::size_t indicating the type’s alignment
requirement in terms of number of bytes:

struct EmptyStruct

{

};

struct Vector3

{

 float X;

 float Y;

 float Z;

};

// Examples on x64 macOS with Clang compiler

DebugLog(alignof(char)); // 1

DebugLog(alignof(int)); // 4

DebugLog(alignof(bool)); // 1

DebugLog(alignof(int*)); // 8

DebugLog(alignof(EmptyStruct)); // 1

DebugLog(alignof(Vector3)); // 4

DebugLog(alignof(int[100])); // 4

Because the alignment requirements of all types in C++ is known at
compile time, the alignof operator is evaluated at compile time. This
means the above is compiled to the same machine code as if we
logged constants:

DebugLog(1);

DebugLog(4);

DebugLog(1);

DebugLog(8);

DebugLog(1);

DebugLog(4);

DebugLog(4);

Note that when using alignof with an array, like we did with
int[100], we get the alignment of the array’s element type. That
means we get 4 for int, not 8 for int* even though arrays and
strings are very similar in C++.

Alignas

Next we have the alignas specifier. This is applied to classes, data
members, and variables to control how they’re aligned. All kinds of
variables are supported except bit fields, parameters, or variables in
catch clauses. For example, say we wanted to align a struct to 16-
byte boundaries:

// Use default alignment

struct Vector3

{

 float X;

 float Y;

 float Z;

};

// Change alignment to 16 bytes

struct alignas(16) AlignedVector3

{

 float X;

 float Y;

 float Z;

};

DebugLog(alignof(Vector3)); // 4

DebugLog(alignof(AlignedVector3)); // 16

We’re not allowed to reduce the alignment requirements because the
resulting code wouldn’t work on the CPU. If we try, we’ll get a

compiler error:

// Compiler error: requested alignment (1) is lower than

the default (4)

struct alignas(1) AlignedVector3

{

 float X;

 float Y;

 float Z;

};

Similarly, invalid alignments also produce a compiler error. What’s
valid depends on the CPU architecture being compiled for, but
usually powers of two are required:

// Compiler error: requested alignment (3) is invalid

struct alignas(3) AlignedVector3

{

 float X;

 float Y;

 float Z;

};

Aligning to 0 is simply ignored:

// OK, but requested alignment (0) is ignored

struct alignas(0) AlignedVector3

{

 float X;

 float Y;

 float Z;

};

DebugLog(alignof(AlignedVector3)); // 4

As a shorthand, we can also use alignas(type). This is equivalent
to alignas(alignof(type)) and it’s useful when we want the
alignment to match another type’s alignment:

struct AlignedToDouble

{

 double Double;

 // Each data member has the same alignment as the

double type

 alignas(double) float Float;

 alignas(double) uint16_t Short;

 alignas(double) uint8_t Byte;

};

// Struct is 32 bytes because of alignment requirements

DebugLog(sizeof(AlignedToDouble)); // 32

// Print distances between data members to see 8-byte

alignment

AlignedToDouble atd;

DebugLog((char*)&atd.Float - (char*)&atd.Double); // 8

DebugLog((char*)&atd.Short - (char*)&atd.Double); // 16

DebugLog((char*)&atd.Byte - (char*)&atd.Double); // 24

It’s rare, but if we specify multiple alignas then the largest value is
used:

struct Aligned

{

 // 16 is the largest, so it's used as the alignment

 alignas(4) alignas(8) alignas(16) int First = 123;

 alignas(16) int Second = 456;

};

DebugLog(sizeof(Aligned)); // 32

Aligned a;

DebugLog((char*)&a.Second - (char*)&a.First); // 16

This leads to the third form of alignas where we pass a template
parameter pack instead of an integer or a type. In this case, it’s just
like we specified one alignas per element of the parameter pack and
therefore the largest value is chosen:

template<int... Alignments>

struct Aligned

{

 alignas(Alignments...) int First = 123;

 alignas(16) int Second = 456;

};

DebugLog(sizeof(Aligned<1, 2, 4, 8, 16>)); // 32

Aligned<1, 2, 4, 8, 16> a;

DebugLog((char*)&a.Second - (char*)&a.First); // 16

Assembly

C++ allows us to embed assembly code. This is called “inline
assembly” and its meaning is highly-specific to the compiler and the
CPU being compiled for. All that the C++ language standard says is
that we write asm("source code") and the rest is left up to the
compiler. For example, here’s some inline assembly that subtracts 5
from 20 on x86 as compiled by Clang on macOS:

int difference = 0;

asm(

 "movl $20, %%eax;" // Put 20 in the eax register

 "movl $5, %%ebx;" // Put 5 in the ebx register

 "subl %%ebx, %%eax ":"=a"(difference)); // difference

= eax - ebx

DebugLog(difference); // 15

Also compiler-specific is how the assembly code interacts with the
surrounding code. In this case, Clang allows us to write :"=a"
(difference) to reference a the difference local variable as an
output from inside the asm statement.

Each compiler will put its own constraints on inline assembly code.
This includes whether the Intel or AT&T assembly syntax is used,
how C++ code interacts with the inline assembly, and of course the
supported CPU architecture instruction sets.

All of this inconsistency has lead to most uses of inline assembly
being eschewed in favor of so-called “intrinsics.” These are functions
that are replaced with a single CPU instruction. They are almost
always named after that CPU instruction, take the parameters that
the CPU instruction operates on, and evaluate to the result of the

CPU instruction. There’s a lot of variance in just what this means, but
it’s a lot simpler and more natural way to embed assembly in a C++
program:

// x86 SSE intrinsics

#include <xmmintrin.h>

// Component-wise addition of four floats in two arrays

into a third array

void Add4(const float* a, const float* b, float* c)

{

 // Load a's four floats from memory into a 128-bit

register

 __m128 reg1 = _mm_load_ps(a);

 // Load b's four floats from memory into a 128-bit

register

 const auto reg2 = _mm_load_ps(b);

 // Add corresponding floats of a and b into the first

128-bit register

 reg1 = _mm_add_ps(reg1, reg2);

 // Store the result register into c's memory

 _mm_store_ps(c, reg1);

}

float a[] = { 1, 1, 1, 1 };

float b[] = { 1, 2, 3, 4 };

float c[] = { 9, 9, 9, 9 };

Add4(a, b, c);

DebugLog(a[0], a[1], a[2], a[3]); // 1, 1, 1, 1

(unmodified)

DebugLog(b[0], b[1], b[2], b[3]); // 1, 2, 3, 4

(unmodified)

DebugLog(c[0], c[1], c[2], c[3]); // 2, 3, 4, 5 (sum)

There are several advantages to this approach. Specific register
names don’t need to be named as the compiler’s register allocator
simply does its normal work. We’re allowed to use normal C++
conventions like parameters, return values, const variables, and
even auto typing. Those variables are strongly-typed, meaning we
get the compiler error-checking we’re used to:

// Compiler error: too many arguments

__m128 reg1 = _mm_load_ps(a, b);

// Compiler error: return value is __m128, not bool

bool reg2 = _mm_load_ps(b);

Language Linkage

When object files are linked together by the linker, it’s important that
they follow the same conventions. Normally this isn’t a problem
because we’re linking together object files compiled from source
code in the same language (C++) that was compiled by the same
version of the same compiler with the same compiler settings.

In other cases, we want to link together code that was compiled
differently. One common scenario is to link together C++ and C code,
such as when C++ code is using a C library or visa versa. In this
case, the languages have different object file conventions that cause
them to clash. Take, for example, the case of overloaded functions in
C++. These aren’t supported in C, so C’s object files simply name
the function the same as in the source code. C++ needs to
disambiguate, so it “mangles” the names to make them unique. It
does this even if there’s only one overload of the function:

////////////////////

// library.h (C++)

////////////////////

int Madd(int a, int b, int c);

////////////////////

// library.cpp (C++)

////////////////////

#include "library.h"

// Compiled into object file with name Maddiii_i

// Example name only. Actual name is effectively

unpredictable.

int Madd(int a, int b, int c)

{

 return a*b + c;

}

////////////////////

// main.c (C)

////////////////////

#include "library.h"

void Foo()

{

 // OK: library.h declares a Madd that takes three

ints and returns an int

 int result = Madd(2, 4, 6);

 // Print the result

 printf("%d\n", result);

}

Both library.cpp and main.c compile, but the linker that takes in
library.o and main.o fails to link them together. The problem is that
main.o is trying to find a function called Madd but there isn’t one.
There’s a function called Maddiii_i, but that doesn’t count because
only exact names are matched.

To solve this problem, C++ provides a way to tell the compiler that
code should be compiled with the same language linkage rules as C:

////////////////////

// library.h (C++)

////////////////////

// Everything in this block should be compiled with C's

linkage rules

extern "C"

{

 int Madd(int a, int b, int c);

}

////////////////////

// library.cpp (C++)

////////////////////

#include "library.h"

// Definitions need to match the language linkage of

their declarations

extern "C"

{

 // Compiled into object file with name Madd

 // Not mangled into Maddiii_i

 int Madd(int a, int b, int c)

 {

 return a*b + c;

 }

}

Now that Madd doesn’t have its name mangled the linker can find it
and produce a working executable.

Some special rules apply to code that’s been switched to C language
linkage. First, class members always have C++ linkage regardless of
whether C linkage is specified.

Second, because C doesn’t support function overloading, any
functions with the same name are assumed to be the same function.
This means we’ll typically get compiler errors for redefining the same
function when we try to make an overload.

Third, and similarly, variables in different namespaces with the same
name are assumed by the compiler to be the same variable. This is
because C doesn’t support namespaces. We’ll typically get the same
compiler errors for trying to redefine these variables.

Fourth, and again similarly, variables and functions can’t have the
same name even if they’re in different namespaces. All of these
rules stem from C’s requirement that everything has a unique name.

If only a single entity needs its language linkage changed, the curly
braces can be omitted similar to how they’re optional for one-
statement if blocks. This doesn’t, however, create a block scope as
it does with other curly braces:

extern "C" int Madd(int a, int b, int c);

extern "C" int Madd(int a, int b, int c)

{

 return a*b + c;

}

The C++ language guarantees that two languages’ linkage are
supported: C and C++. Compilers are free to implement support for
more languages. The default language linkage is clearly C++, but it
can be specified explicitly if so desired:

extern "C++" int Madd(int a, int b, int c);

extern "C++" int Madd(int a, int b, int c)

{

 return a*b + c;

}

Linkage rules can be nested. In this case, the innermost linkage is
used:

// Change linkage to C

extern "C"

{

 // Change linkage back to C++

 extern "C++" int Madd(int a, int b, int c);

}

// OK: linkage is C++

extern "C++" int Madd(int a, int b, int c)

{

 return a*b + c;

}

Finally, a common convention is to use the preprocessor to check for
__cplusplus which indicates whether the code is being compiled as
C++. In response, C++ language linkage is used. This allows code to
be compiled as either C++ as a library that can be linked with C
code. The code can also be compiled directly as C, such as when a
C++ compiler isn’t available. This approach requires the code to use
only the subset that is legal for both languages:

////////////////////

// library.h

////////////////////

// If compiled as C++, this is defined

#ifdef __cplusplus

 // Make a macro called EXPORTED with the code to set

C language linkage

 #define EXPORTED extern "C"

// If compiled as C (assumed since not C++)

#else

 // Make an empty macro called EXPORTED

 #define EXPORTED

#endif

// Add EXPORTED at the beginning

// For C++, this sets the language linkage to C

// For C, this does nothing

EXPORTED int Madd(int a, int b, int c);

////////////////////

// library.c

////////////////////

#include "library.h"

// Compiled into object file with name Madd regardless of

language

EXPORTED int Madd(int a, int b, int c)

{

 return a*b + c;

}

Conclusion

In addition to the myriad low-level controls C++ gives us, these
features provide us with even more control. We can query and set
the alignment of various data types and variables to make optimal
use of specific CPU architectures’ requirements to improve
performance in a variety of ways. C# provides some control over
struct field layout, but that’s a far more limited tool than alignas in
C++.

One way to use this control over alignment is by writing inline
assembly, another C++ feature, or by making use of CPU-specific
intrinsics. These features combine together to provide precise
control over what machine code actually gets executed and without
the need to write entire programs in assembly. C# is beginning to
offer intrinsics starting with x86 in .NET Core 3.0 and Unity’s Burst-
specific intrinsics.

C++ also allows for a high level of compatibility with its predecessor:
C. Despite having far more features, C++ code can be easily
integrated with C code by setting the language linking mode and
following a few special rules. This makes our C++ libraries available
for usage in C and in environments that follow C’s linkage rules.
There are quite a few of those, including language bindings for C#,
Rust, Python, and JavaScript via Node.js. The same goes for C#
with its P/Invoke system of language bindings that enables
interoperability with the C linkage model.

https://docs.microsoft.com/en-us/dotnet/api/system.runtime.intrinsics.x86?view=net-5.0
https://docs.unity3d.com/Packages/com.unity.burst@1.5/manual/docs/CSharpLanguageSupport_BurstIntrinsics.html

34. Fold Expressions and Elaborated Type
Specifiers

Fold Expressions

Fold expressions, available since C++17, allow us to apply a binary
operator to all the parameters in a template’s parameter pack. For a
simple example, say we want to add up some integers:

// Template parameters are a pack of integers

template<int... Vals>

// Apply the + operator to the Vals pack

int SumOfAll = (Vals + ...);

// Instantiate the template with four integers in the

Vals pack

DebugLog(SumOfAll<1, 2, 3, 4>); // 10

The “fold expression” is the (Vals + ...) part. Parentheses are
required here, unlike most expressions. We name the parameter
pack (Vals), name the binary operator (+), and add ... to indicate
that we want to fold that operator over the pack.

When the template is instantiated, the compiler converts the fold
expression into a series of binary operators:

// Expanded version of the template parameter pack

template<int Val1, int Val2, int Val3, int Val4>

// Expanded version of the fold expression

int SumOfAll = Val1 + (Val2 + (Val3 + Val4));

This kind of fold expression is called a “unary right fold.” This means
that the rightmost arguments have the operator applied to them fist.

In order to reverse this and apply the operator to the leftmost
arguments first, we use a “unary left fold” like this:

template<int... Vals>

int SumOfAll = (... + Vals); // Swapped "..." and "Vals"

DebugLog(SumOfAll<1, 2, 3, 4>); // 10

When instantiated, the compiler produces the equivalent of this:

template<int Val1, int Val2, int Val3, int Val4>

int SumOfAll = ((Val1 + Val2) + Val3) + Val4;

The choice of a left or right fold doesn’t really matter when we’re just
adding integers, but it will surely matter with other types and other
operators.

If the parameter pack happens to be empty, only three binary
operators are allowed. First, we can use && to evaluate to true:

template<bool... Vals>

bool AndAll = (... && Vals);

DebugLog(AndAll<false, false>); // false

DebugLog(AndAll<false, true>); // false

DebugLog(AndAll<true, false>); // false

DebugLog(AndAll<true, true>); // true

DebugLog(AndAll<>); // true

Second, we can use || to evaluate to false:

template<bool... Vals>

bool OrAll = (... || Vals);

DebugLog(OrAll<false, false>); // false

DebugLog(OrAll<false, true>); // true

DebugLog(OrAll<true, false>); // true

DebugLog(OrAll<true, true>); // true

DebugLog(OrAll<>); // false

And third, which is by far the least common use case, the , operator
will evaluate to void():

template<bool... Vals>

void Goo()

{

 return (... , Vals); // Equivalent to "return

void();"

}

// OK

Goo();

Now that we’ve seen the “unary” fold expressions, let’s look at the
“binary” ones. To make these, we add the same binary operator after
the ... then an additional value:

template<int... Vals>

// Add the operator (+) then an additional value (1)

after the unary fold

int SumOfAllPlusOne = (Vals + ... + 1);

DebugLog(SumOfAllPlusOne<1, 2, 3, 4>); // 11

Here we’ve converted the unary fold expression (Vals + ...) into a
binary one by adding + 1 to the end of it. This adds another value in
addition to the values in the parameter pack. Since this was a “binary
right fold” the parentheses will be added on the rightmost values first:

template<int Val1, int Val2, int Val3, int Val4>

int SumOfAll = 1 + (Val1 + (Val2 + (Val3 + Val4)));

The “binary left fold” version just has the additional value on the left:

template<int... Vals>

int SumOfAllPlusOne = (1 + ... + Vals);

When instantiated with four values in the parameter pack, it’ll look
like this:

template<int Val1, int Val2, int Val3, int Val4>

int SumOfAll = (((1 + Val1) + Val2) + Val3) + Val4;

Regardless of which kind of fold expression we write, we’re allowed
to use any of these binary operators:

+

-

*

/

%

^

&

|

=

<

>

<<

>>

+=

-=

*=

/=

%=

^=

&=

|=

<<=

>>=

==

!=

<=

>=

&&

||

,

.*

->*

Elaborated Type Specifiers

We’ve seen before that C code requires us to use struct Player
instead of just Player as the type name of the Player struct:

// C code

struct Player

{

 int Health;

 int Speed;

};

struct Player p; // C requires "struct" prefix

p.Health = 100;

p.Speed = 10;

DebugLog(p.Health, p.Speed); // 100, 10

That’s usually not necessary in C++. However, there is an edge case
where we have both a class and a variable with the same name.
Using the name refers to the variable, so we’re unable to use the
type anymore:

// A class

struct Player

{

};

// A variable with the same name as the class

int Player = 123;

// Compiler error: Player is not a type

// This is because "Player" refers to the variable, not

the class

Player p;

To get around this, we can use the C-style struct Player to
explicitly state that we’re referring to the struct, not the variable. This
is called an “elaborated type specifier” since we are elaborating on
the Player type:

// Elaborated type specifier

// OK: refers to the Player struct, not the Player

variable

struct Player p;

Since struct and class are very similar, we can use them
interchangeably in our elaborated type specifiers:

// Elaborated type specifier using "class" when Player is

a "struct"

class Player p;

Unions are not interchangeable:

// A union

union IntFloat

{

 int32_t Int;

 float Float;

};

// A variable with the same name as the union

bool IntFloat = true;

// Compiler error: IntFloat is not a type

// This is because "IntFloat" refers to the variable, not

the union

IntFloat u;

// Elaborated type specifier

// Compiler error: IntFloat is a union, not a class or

struct

class IntFloat u;

// Elaborated type specifier

// OK: refers to the IntFloat union, not the IntFloat

variable

union IntFloat u;

Enumerations are also their own kind of entity and need to be
elaborated with enum:

// An enumeration

enum DamageType

{

 Physical,

 Water,

 Fire,

 Magic,

};

// A variable with the same name as the enum

float DamageType = 3.14f;

// Elaborated type specifier

// Compiler error: DamageType is an enum, not a class or

struct

class DamageType d;

// Elaborated type specifier

// OK: refers to the DamageType enum, not the DamageType

variable

enum DamageType d;

Plain enum can be used with a scoped enumeration but enum class
or enum struct can’t be used with unscoped enumerations and must
be used with scoped enumerations:

enum class Scoped

{

};

enum Unscoped

{

};

enum Scoped e1; // OK

enum Unscoped e2; // OK

enum class Scoped e3; // OK

enum class Unscoped e4; // Compiler error: can't use

scoped with unscoped enum

enum struct Scoped e5; // OK

enum struct Unscoped e6; // Compiler error: can't use

scoped with unscoped enum

Regardless of the type, we can also refer to its location in a
namespace using the scope resolution operator:

namespace Gameplay

{

 enum DamageType

 {

 Physical,

 Water,

 Fire,

 Magic,

 };

 float DamageType = 3.14f;

}

// Elaborated type specifier using scope resolution

operator

enum Gameplay::DamageType d;

The same goes for classes’ member types:

struct Gameplay

{

 // Member type of the class

 enum DamageType

 {

 Physical,

 Water,

 Fire,

 Magic,

 };

 // Member variable of the class

 constexpr static float DamageType = 3.14f;

};

// Elaborated type specifier referring to class member

type

enum Gameplay::DamageType d;

Conclusion

Fold expressions provide a way for us to cleanly apply binary
operators to templates’ parameter packs. Without them, we’d need
to resort to alternatives such as recursively instantiating templates
and using specialization to stop the recursion. That’s much less
readable and much slower to compile as many templates would
need to be instantiated and then then thrown away. We get our
choice of unary or binary and left or right folds so we can control how
the binary operator is applied to the values of the parameter pack.
Since C# doesn’t have variadic templates, it also doesn’t have fold
expressions.

Elaborated type specifiers are a minor feature that provides us a
workaround in the case where we have types with the same name
as variables. We can refer to these types explicitly to change the
default meaning of the name shared between the type and the
variable. This is rarely necessary, but a nice tool to have when the
situation arises. C# doesn’t allow a type to have the same name as a
variable, so there’s no equivalent to this in that language.

35. Modules, The New Build Model

Module Basics

The new build system is based on a new language concept called a
“module.” This system promises to dramatically decrease compile
times, both clean and incremental. It also promises to dramatically
increase encapsulation by preventing leakage of preprocessor
directives and implementation details. Finally, it fully removes the
need to specify file system paths in source code like we do with
#include and then use complex directory lookups to find the
referenced files.

To convert a translation unit such as a .cpp file into a “module unit,”
we use an export module statement:

///////////

// math.ixx

///////////

export module math;

We’ve done two things here. First, we’ve named the module with the
.ixx extension. Module files can be named with any extension, or no
extension at all, just like any other C++ source file. The .ixx
extension is used here simply because it’s the preference of
Microsoft Visual Studio 2019, one of the first compilers to support
modules.

Second, the line export module math; begins a module named math.
Like the rest of C++, the source file is read from top to bottom.

Everything after this statement is part of the math module, but
everything before it is not.

Currently the module is empty since there’s nothing else in the
source file. Let’s add some functions:

///////////

// math.ixx

///////////

// Normal function before the "export module" statement

float Average(float x, float y)

{

 return (x + y) / 2;

}

// Exported function before the "export module" statement

export float MagnitudeSquared(float x, float y)

{

 return x*x + y*y;

}

// The module begins here

export module math;

// Normal function after the "export module" statement

float Min(float x, float y)

{

 return x < y ? x : y;

}

// Exported function after the "export module" statement

export float Max(float x, float y)

{

 return x > y ? x : y;

}

There are a couple things to notice here, too. First, we can add
export before anything we want to be usable from outside the
module. This includes functions like these, variables, types, using
aliases, templates, and namespaces. It does not include
preprocessor directives such as macros.

Modules can seem analogous to namespaces, but the two are quite
distinct. A module can export a namespace and a module doesn’t
imply a namespace. Modules aren’t meant to replace namespaces,
but they may be used for similar purposes in grouping together
related functionality.

We can export anything that doesn’t have internal linkage, such as
by being declared static or inside an unnamed namespace. Our
exports must be directly inside of a namespace block, outside of any
blocks at the top level of the file, or in an export block:

// Everything in this block is exported

export

{

 float Min(float x, float y)

 {

 return x < y ? x : y;

 }

 // Redundant "export" has no effect

 export float Max(float x, float y)

 {

 return x > y ? x : y;

 }

}

Second, two of these functions are before the export module math;
statement. These are part of the “global module” rather than the math
module, just like everything outside of a namespace is part of the
“global namespace.”

There can be only one module in a module unit source file. This isn’t
allowed:

// First module: OK

export module math;

float Min(float x, float y)

{

 return x < y ? x : y;

}

// Second module: compiler error

export module util;

export bool IsNearlyZero(float val)

{

 return val < 0.0001f;

}

Assuming we don’t do that, let’s now use this module from another
file:

///////////

// main.cpp

///////////

// Import the module for usage

import math;

// OK: Max is found in the "math" module we imported

DebugLog(Max(2, 4)); // 4

// Compiler error: none of these are part of the "math"

module

DebugLog(Average(2, 4));

DebugLog(MagnitudeSquared(2, 4));

DebugLog(Min(2, 4));

We use import to name the module that we want to use. We get
access to everything marked export in that module. Unlike with
header files, we don’t specify the file name of the module unit. This is
similar to the C# build system where we simply name a namespace:
using System;.

Partitions and Fragments

We could put all of the code for a module in a single file, but this
doesn’t scale well as we add more and more code. Imagine all of
System.Collections.Generic in a single file! C# addresses this by
putting one class (List<T>, Dictionary<K, V>, etc.) in each file. C++
addresses this in multiple ways. The first is called “module partitions”
and they allow us to split code across multiple files while still being
part of a single module:

///////////////

// geometry.ixx

///////////////

// Specify that this is the "geometry" partition of the

"math" module

export module math:geometry;

export float MagnitudeSquared(float x, float y)

{

 return x * x + y * y;

}

////////////

// stats.ixx

////////////

// Specify that this is the "stats" partition of the

"math" module

export module math:stats;

export float Min(float x, float y)

{

 return x < y ? x : y;

}

export float Max(float x, float y)

{

 return x > y ? x : y;

}

export float Average(float x, float y)

{

 return (x + y) / 2;

}

///////////

// math.ixx

///////////

// This is the primary "math" module

export module math;

// Import the "stats" partition and export it

export import :stats;

// Import the "geometry" partition and export it

export import :geometry;

///////////

// main.cpp

///////////

// Import the "math" module as normal

import math;

// Use its exported entities as normal

DebugLog(Min(2, 4)); // 2

DebugLog(Max(2, 4)); // 4

DebugLog(Average(2, 4)); // 3

DebugLog(MagnitudeSquared(2, 4)); // 20

We see here that partitions are specified with a :. The module
partition names the primary module (math) and the name of its
partition (stats). The primary module just uses the name of the
partition (:stats) because its name (math) has already been stated
and doesn’t need to be repeated. It must export all of the partitions
so the compiler knows everything that’s available in the module
when it’s used.

Unlike other identifiers, module names may include a . in them. This
means we could instead use math.stats and math.geometry as our
module names:

///////////////

// geometry.ixx

///////////////

// This is a primary "math.geometry" module

export module math.geometry;

export float MagnitudeSquared(float x, float y)

{

 return x * x + y * y;

}

////////////

// stats.ixx

////////////

// This is a primary "math.stats" module

export module math.stats;

export float Min(float x, float y)

{

 return x < y ? x : y;

}

export float Max(float x, float y)

{

 return x > y ? x : y;

}

export float Average(float x, float y)

{

 return (x + y) / 2;

}

///////////

// math.ixx

///////////

// This is the primary "math" module

export module math;

// Import the "math.stats" module and export it

export import math.stats;

// Import the "math.geometry" module and export it

export import math.geometry;

///////////

// main.cpp

///////////

// Import the "math" module as normal

import math;

// Use its exported entities as normal

DebugLog(Min(2, 4)); // 2

DebugLog(Max(2, 4)); // 4

DebugLog(Average(2, 4)); // 3

DebugLog(MagnitudeSquared(2, 4)); // 20

The difference here is that math.stats and math.geometry aren’t
partitions, they’re primary modules. Any of them can be used
directly:

// Import the "math.stats" primary module

import math.stats;

// Use its exported entities as normal

DebugLog(Min(2, 4)); // 2

DebugLog(Max(2, 4)); // 4

DebugLog(Average(2, 4)); // 3

It’s important to note that math.stats and math.geometry aren’t
“submodules” as far as the compiler is concerned. They just
happened to be named in a way that makes them appear that way.
This is largely the same as C# namespaces since there’s no special
relationship between System, System.Collections, and
System.Collections.Generic other than the naming.

Lastly, there is an implicit private “fragment” that can hold only code
that can’t possibly effect the module’s interface. This restriction
allows compilers to avoid recompiling code that uses the module
when only the private fragment changes:

// Primary module

export module math;

// Export some function declarations

export float Min(float x, float y);

export float Max(float x, float y);

// This begins the "private fragment"

module :private;

// Define some non-exported functions

float Min(float x, float y)

{

 return x < y ? x : y;

}

float Max(float x, float y)

{

 return x > y ? x : y;

}

Module Implementation Units

So far all of our module files have been “module interface units”
since they included the export keyword. They’re interfaces to be
used by code outside the module such as our main.cpp.

There’s another kind of module unit though: “module implementation
units.” These are meant to contain implementation details of the
module. They don’t use the export keyword, but contain internal
code that’s accessible from within the module:

///////////////

// geometry.ixx

///////////////

// A non-exported module partition

module math:geometry;

// A non-exported function

float MagnitudeSquared(float x, float y)

{

 return x * x + y * y;

}

///////////

// math.ixx

///////////

// Primary module

export module math;

// Import the module implementation partition

import :geometry;

// Export a function from the module implementation

partition by declaring it

// and adding the "export" keyword

export float MagnitudeSquared(float x, float y);

// Export more functions

export float Magnitude(float x, float y)

{

 // Call functions in the imported module

implementation partition

 float magSq = MagnitudeSquared(x, y);

 return Sqrt(magSq); // TODO: write Sqrt()

}

This is similar to how we’d split code across header files (.hpp) and
translation units (.cpp). In that traditional build system, we’d add
declarations of functions in the header files and definitions of those
functions in the translation units.

If we don’t need the partitions but still want to separate the interface
from the implementation, we can drop the import and remove the
partition name:

///////////////

// geometry.cpp

///////////////

// A non-exported module

module math;

// A non-exported function

float MagnitudeSquared(float x, float y)

{

 return x * x + y * y;

}

///////////

// math.ixx

///////////

export module math;

// Note: no need to "import math;" since this is already

the "math" module

export float MagnitudeSquared(float x, float y);

export float Magnitude(float x, float y)

{

 float magSq = MagnitudeSquared(x, y);

 return Sqrt(magSq); // TODO: write Sqrt()

}

Notice that we now have geometry.cpp, not geometry.ixx. This is
because it can’t be imported anymore and must be used implicitly
like we did in the math.ixx module unit.

Module Linkage

In the traditional build model, there is “internal linkage” and “external
linkage.” This means that something is either the same internally in a
translation unit or externally across translation units. With modules,
there is now “module linkage.” This means that something is the
same across all module units and users of the module:

///////////////////

// statsglobals.ixx

///////////////////

export module stats:globals;

// Variable with "module linkage"

export int NumEnemiesKilled = 0;

////////////

// stats.ixx

////////////

export module stats;

import :globals;

export void CountEnemyKilled()

{

 // Refers to the same variable as in statsglobal.ixx

 NumEnemiesKilled++;

}

export int GetNumEnemiesKilled()

{

 // Refers to the same variable as in statsglobal.ixx

 return NumEnemiesKilled;

}

///////////

// main.cpp

///////////

import stats;

DebugLog(GetNumEnemiesKilled()); // 0

CountEnemyKilled();

DebugLog(GetNumEnemiesKilled()); // 1

// Refers to the same variable as in statsglobal.ixx

DebugLog(NumEnemiesKilled); // 1

Compatibility

Given the 40+ year history of C++, the new build system must be
compatible with the old build system. There are a ton of existing
header files that we’ll want to use with modules. Thankfully, C++
provides a new preprocessor directive to do just that:

import "mylibrary.h";

// ...or...

import <mylibrary.h>;

Despite not starting with a # and requiring a ; at the end, this is really
a preprocessor directive. It’s distinct from a regular module import
because it either has double quotes ("mylibrary.h") or angle
brackets (<mylibrary.h>) depending on the header search rules
desired.

The effect of this directive is to export everything that’s exportable in
the header file just like we added export to its source code. We
typically use it to create a “header unit” that wraps a header file in a
module:

////////////////

// mylibrary.ixx

////////////////

// Module that wraps mylibrary.h

export module mylibrary;

// Export everything in the header file that can be

exported

import "mylibrary.h";

There are a couple of key differences between this import directive
and #include and import with a module. First, contrary to #include,
preprocessor symbols defined before the import directive are not
visible to the imported header file:

//////////////

// mylibrary.h

//////////////

int ReadVersion()

{

 int version = ReadTextFileAsInteger("version.txt");

 #if ENABLE_LOGGING

 DebugLog("Version: ", version);

 #endif

 return version;

}

///////////

// main.cpp

///////////

#include "mylibrary.h"

int version = ReadVersion(); // Does not log

// ...equivalent to...

int ReadVersion()

{

 int version = ReadTextFileAsInteger("version.txt");

 #if ENABLE_LOGGING // Note: not defined

 DebugLog("Version: ", version);

 #endif

 return version;

}

int version = ReadVersion();

/////////////////

// mainlogged.cpp

/////////////////

// Define a preprocessor symbol before #include

#define ENABLE_LOGGING 1

#include "mylibrary.h"

int version = ReadVersion(); // Does log

// ...equivalent to...

#define ENABLE_LOGGING 1

int ReadVersion()

{

 int version = ReadTextFileAsInteger("version.txt");

 #if ENABLE_LOGGING // Note: is defined

 DebugLog("Version: ", version);

 #endif

 return version;

}

int version = ReadVersion();

C++ provides a facility to work around this limitation. We can use
module; before our named module and put preprocessor directives
between these two statements. Everything here will be part of the
“global module” and accessible from inside the module:

///////////////

// metadata.ixx

///////////////

// No module name means "global module"

module;

// Define a preprocessor symbol before #include

// Only preprocessor symbols are allowed in this section

#define ENABLE_LOGGING 1

// Use #include instead of the import directive

#include "mylibrary.h"

// Our named module

export module metadata;

// Export a function from the header file

export int ReadVersion();

///////////

// main.cpp

///////////

// Use the module as normal

import metadata;

DebugLog(ReadVersion()); // 6

The second difference between the import directive and import with
a module is that preprocessor macros in the header file are
exported:

///////////////

// legacymath.h

///////////////

// Macro defined in the header file

#define PI 3.14

///////////

// math.ixx

///////////

export module math;

// Import directive exposes the PI macro

import "legacymath.h";

export double GetCircumference(double radius)

{

 // Macros from the import directive are usable

 return 2.0 * PI * radius;

}

///////////

// main.cpp

///////////

import math;

// OK

DebugLog(GetCircumference(10.0));

// Compiler error: macros from import directives are not

exported

DebugLog(PI);

Notice how the PI macro is available for use in the header unit that
used the import directive but not in users of that module. This
prevents macros from transitively “leaking” throughout an entire
program.

Conclusion

C++20’s new module build system is much more analogous to C#
than its own legacy header files and #include. In C++ terms, C#
mixes namespaces and modules together somewhat. We write the
name of a namespace (using Math;) in order to gain access to its
contents. C++ separates these two features. We can write import
math; without math being a namespace. We can layer namespaces
on top of modules and even export them.

C# provides support for splitting code across multiple files by adding
one member of a namespace in each file. The same is possible in
C++, but we can also go further by adding multiple members in a
single file and splitting the interface from the implementation.
Partitions and fragments are flexible tools that allow us to sub-divide
large modules across many source files.

As a C++20 feature that was only standardized recently, modules
are not commonly used as of this writing. However, they’re destined
to eventually become the dominant build system and bring their
many improvements over header files to the vast majority of
codebases. In the meantime, we have tools such as the new import
"header.h" directive and access to the global module to ease the
transition. New code using modules can use these tools to package
legacy code into modules, just as if it was written that way from the
start. Old code can simply continue to use the header files.

36. Coroutines

Fixed Statements

In an unsafe context in C#, we can use fixed statements to prevent
the GC from moving an object:

// Unsafe function creates an unsafe context for its body

unsafe void ZeroBytes(byte[] bytes)

{

 // Prevent moving the array

 fixed (byte* pBytes = bytes)

 {

 // Access the array via a pointer

 for (int i = 0; i < bytes.Length; ++i)

 {

 pBytes[i] = 0;

 }

 }

}

Since C++ has no GC, our objects never move around. We therefore
have no need for a fixed statement as we can simply take the
address of objects:

struct ByteArray

{

 int32_t Length;

 uint8_t* Bytes;

};

void ZeroBytes(ByteArray& bytes)

{

 ByteArray* pBytes = &bytes;

 for (int i = 0; i < pBytes->Length; ++i)

 {

 pBytes->Bytes[i] = 0;

 }

}

There’s often no reason to bother with taking a pointer though. This
is because objects are passed by value by default. In the above
example, we take a ByteArray& lvalue reference in ZeroBytes
because taking just a ByteArray would cause a copy to be made
when calling the function. So we normally already have a pointer-like
reference to objects and can simply use it directly:

void ZeroBytes(ByteArray& bytes)

{

 for (int i = 0; i < bytes.Length; ++i)

 {

 bytes.Bytes[i] = 0;

 }

}

Fixed Size Buffers

Another meaning of fixed in C# is to create a buffer of primitives
(bool, byte, char, short, int, long, sbyte, ushort, uint, ulong,
float, or double) that is directly part of a class or struct rather than
a managed reference as we’d get with an array such as byte[]:

// An unsafe context is required

unsafe struct FixedLengthArray

{

 // 16 integers are directly part of the struct

 // This is _not_ a managed reference to an int[]

 public fixed int Elements[16];

}

C++ has no need for fixed size buffers as it directly supports arrays:

struct FixedLengthArray

{

 // 16 integers are directly part of the struct

 int32_t Elements[16];

};

Further, there’s no restriction to only use primitive types. Any type
may be used:

struct Vector2

{

 float X;

 float Y;

};

struct FixedLengthArray

{

 // 16 Vector2s are directly part of the struct

 Vector2 Elements[16];

};

Properties

C# structs and classes support a special kind of function called
“properties” that give the illusion that the user is referencing a field
rather than calling a function:

class Player

{

 // Conventionally called the "backing field"

 string m_Name;

 // Property called Name of type string

 public string Name

 {

 // Its "get" function takes no parameters and

must return the property

 // type: string

 get

 {

 return m_Name;

 }

 // The "set" function is implicitly passed a

single parameter of the

 // property type (string) and must return void

 set

 {

 m_Name = value;

 }

 }

}

Player p = new Player();

// Call "set" on the Name property and pass "Jackson" as

the value parameter

p.Name = "Jackson";

// Call "get" on the Name property and get the returned

string

DebugLog(p.Name);

When the bodies of the get and set functions and the “backing field”
are trivial, as shown above, automatically-implemented properties
can be used to tell the compiler to generate this boilerplate:

class Player

{

 public string Name { get; set; }

}

C++ doesn’t have properties. Instead, naming conventions are
typically used to create pairs of “get” and “set” functions. Here’s a
popular naming convention:

struct Player

{

 const char* m_Name;

 const char* GetName() const

 {

 return m_Name;

 }

 void SetName(const char* value)

 {

 m_Name = value;

 }

};

Player p{};

p.SetName("Jackson");

DebugLog(p.GetName());

Another popular convention relies on overloading to eliminate the
“Get” and “Set” prefixes:

struct Player

{

 const char* m_Name;

 const char* Name() const

 {

 return m_Name;

 }

 void Name(const char* value)

 {

 m_Name = value;

 }

};

Player p{};

p.Name("Jackson");

DebugLog(p.Name());

Whichever convention is chosen, macros can be used to remove the
boilerplate:

// Macro to create a property

#define AUTO_PROPERTY(propType, propName) \

 propType m_##propName; \

 const propType& propName() const \

 { \

 return m_##propName; \

 } \

 void propName(const propType& value) \

 { \

 m_##propName = value; \

 }

struct Player

{

 // Create the property

 AUTO_PROPERTY(const char*, Name)

};

Player p{};

p.Name("Jackson");

DebugLog(p.Name());

Extern

To call functions implemented outside of the .NET environment, C#
can declare them as extern. Typically this is used to call into C or
C++ code:

using System.Runtime.InteropServices;

public static class WindowsApi

{

 // This function is implemented in Windows'

User32.dll

 [DllImport("User32.dll", CharSet=CharSet.Unicode)]

 public static extern int MessageBox(

 IntPtr handle, string message, string caption,

int type);

}

// Call the external function

WindowsApi.MessageBox((IntPtr)0, "Hello!", "Title", 0);

The extern keyword in C++ has a different meaning: implemented in
another translation unit. To call functions in another DLL, we use our
platform’s API to load the DLL, call functions, then unload it. Here’s
how we can do that with the Windows API:

// Platform API that provides DLL access

#include <windows.h>

// Load the DLL

auto dll = LoadLibraryA("User32.dll");

// Get the address of the MessageBoxA function (ASCII

version of MessageBox)

auto proc = GetProcAddress(dll, "MessageBoxA");

// Cast to the appropriate kind of function pointer

auto mb = (int32_t(*)(void*, const char*, const char*,

uint32_t))(proc);

// Call MessageBoxA via the function pointer

(*mb)(nullptr, "Hello!", "Title", 0);

// Unload the DLL

FreeLibrary(dll);

The .NET environment takes care of loading and unloading DLLs
referenced by [DllImport] as well as creating function pointers to
the associated extern functions. As a trade-off, we lose control over
elements of the process such as timing and error handling.

For multi-platform C++ code, it’s typical to wrap this platform-specific
functionality in an abstraction layer that uses the preprocessor to
make the right calls. For example:

///////////////

// platform.hpp

///////////////

// Windows

#ifdef _WIN32

 #include <windows.h>

// Non-Windows (e.g. macOS)

#else

 // TODO

#endif

class Platform

{

#if _WIN32

 using MessageBoxFuncPtr = int32_t(*)(

 void*, const char*, const char*, uint32_t);

 HMODULE dll;

 MessageBoxFuncPtr mb;

#else

 // TODO

#endif

public:

 Platform()

 {

#if _WIN32

 dll = LoadLibraryA("User32.dll");

 mb = (MessageBoxFuncPtr)(GetProcAddress(dll,

"MessageBoxA"));

#else

 // TODO

#endif

 }

 ~Platform()

 {

#if _WIN32

 FreeLibrary(dll);

#else

 // TODO

#endif

 }

 // Abstracts calls to MessageBoxA on Windows and

something else on other

 // platforms (e.g. macOS)

 void MessageBox(const char* message, const char*

title)

 {

#if _WIN32

 (*mb)(nullptr, message, title, 0);

#else

 // TODO

#endif

 }

};

///////////

// game.cpp

///////////

#include "platform.hpp"

Platform platform{};

platform.MessageBox("Hello!", "Title");

One alternative to using preprocessor directives like this is to create
different files per platform: platform_windows.cpp,
platform_macos.cpp, etc. Each contains an implementation of the
Platform class with code appropriate for the platform it’s intended to
be compiled for. The project can then be configured to only compile
one of these files so there will be no link time conflict as only one
Platform class will exist.

Extension Methods

C# gives the illusion that we can add methods to classes and structs.
These are not really added though as they are still static functions
outside the class or struct. C# just allows for them to be called on
instances of the class or struct they “extend”:

public static class ArrayExtensions

{

 // Extension method on float[] because the first

parameter has "this"

 public static float Average(this float[] array)

 {

 float sum = 0;

 foreach (float cur in array)

 {

 sum += cur;

 }

 return sum / array.Length;

 }

}

float[] array = { 1, 2, 3 };

// Call the extension method like it's a method of

float[]

DebugLog(array.Average()); // 2

// Or call it normally

DebugLog(ArrayExtensions.Average(array));

The first version (array.Average()) is rewritten by the compiler into
the second version (ArrayExtensions.Average(array)). Extension
methods don’t get any special access to the class or struct they
contain. For example, they can’t access private fields.

The C++ version of this is similar to the second version: we typically
write a “free function” outside of any class that takes the class to
“extend” as a parameter:

float Average(float* array, int32_t length)

{

 float sum = 0;

 for (int32_t i = 0; i < length; ++i)

 {

 sum += array[i];

 }

 return sum / length;

}

float array[] = { 1, 2, 3 };

DebugLog(Average(array, 3)); // 2

Functions like this could be put into a namespace or made into static
member functions of a class, but the principal remains: the function
is disconnected from what it “extends” with no special access to it.

Checked Arithmetic

C# features the checked keyword to perform runtime checks on
arithmetic. We can opt into this on a per-expression basis or for a
whole block:

public class Player

{

 public uint Health;

 public void TakeDamage(uint amount)

 {

 // Opt into arithmetic checking

 checked

 {

 // If this underflows, an OverflowException

is thrown

 Health -= amount;

 }

 }

}

Player p = new Player{ Health = 100 };

// OK: Health is now 50

p.TakeDamage(50);

// OverflowException: tried to underflow Health to -20

p.TakeDamage(70);

C++ doesn’t have built-in arithmetic checking. Instead, we have a
few options. First, we can perform our own manual arithmetic
checks:

struct OverflowException

{

};

struct Player

{

 uint32_t Health;

 void TakeDamage(uint32_t amount)

 {

 if (amount > Health)

 {

 throw OverflowException{};

 }

 Health -= amount;

 }

};

Player p{ 100 };

// OK: Health is now 50

p.TakeDamage(50);

// OverflowException: tried to underflow Health to -20

p.TakeDamage(70);

Second, we can wrap numeric types in structs and overload
operators with the checks. This option is the closest match to
checked blocks in C# as it allows us to perform checks on many
operations without needing to write anything for each operation:

struct CheckedUint32

{

 uint32_t Value;

 // Conversion from uint32_t

 CheckedUint32(uint32_t value)

 : Value(value)

 {

 }

 // Overload the subtraction operator to check for

underflow

 CheckedUint32 operator-(uint32_t amount)

 {

 if (amount > Value)

 {

 throw OverflowException{};

 }

 return Value - amount;

 }

 // Implicit conversion back to uint32_t

 operator uint32_t()

 {

 return Value;

 }

};

struct Player

{

 uint32_t Health;

 void TakeDamage(uint32_t amount)

 {

 // Put Health in a wrapper struct to check its

arithmetic operators

 Health = CheckedUint32{ Health } - amount;

 }

};

Or we can create functions that perform checks. This is a close
match to checked expressions in C# that apply only to one operation:

uint32_t CheckedSubtraction(uint32_t a, uint32_t b)

{

 if (b > a)

 {

 throw OverflowException{};

 }

 return a - b;

}

struct Player

{

 uint32_t Health;

 void TakeDamage(uint32_t amount)

 {

 Health = CheckedSubtraction(Health, amount);

 }

};

This last approach is taken by libraries such as Boost Checked
Arithmetic.

The unchecked keyword isn’t present in C++ because there’s no
checked arithmetic to disable.

https://www.boost.org/doc/libs/master/libs/safe_numerics/doc/html/checked_arithmetic.html

Nameof

C#’s nameof operator gets a string name of a variable, type, or
member:

Player p = new Player();

DebugLog(nameof(p)); // p

C++ doesn’t have this feature built in, but there’s a library available
that provides a NAMEOF macro for similar functionality:

Player p{};

DebugLog(NAMEOF(p)); // p

As with the C# operator, it supports variables, types, and members.
Additionally, it supports macros, enum “flag” values, and operates at
both compile time and run time.

https://github.com/Neargye/nameof

Decimal

C# has a built-in decimal type for financial calculations and other
times where decimal places need to be represented without any
rounding:

float f = 1.0f;

for (int i = 0; i < 10; ++i)

{

 f -= 0.1f;

 DebugLog(f);

}

This prints inaccurate values because floating point can’t represent
these without rounding:

0.9

0.8

0.6999999

0.5999999

0.4999999

0.3999999

0.2999999

0.1999999

0.09999993

-7.450581E-08

If we use decimal, we avoid the rounding:

decimal d = 1.0m;

for (int i = 0; i < 10; ++i)

{

 d -= 0.1m;

 DebugLog(d);

}

This prints:

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

C++ doesn’t have a built-in decimal type, but libraries such as GMP
and decimal_for_cpp create such types. For example, in the latter
library we can write this:

#include "decimal.h"

using namespace dec;

https://gmplib.org/
https://github.com/vpiotr/decimal_for_cpp

decimal<1> d{ 1.0 };

for (int i = 0; i < 10; ++i)

{

 d -= decimal<1>{ 0.1 };

 DebugLog(d);

}

This prints what we’d expect:

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Reflection

C# implicitly stores a lot of information about the structure of the
program in the binaries it compiles to. This information is then
accessible at runtime for the C# code to query via “reflection”
methods like GetType that return classes like Type.

public class Player

{

 public string Name;

 public uint Health;

}

Player p = new Player{Name="Jackson", Health=100};

Type type = p.GetType();

foreach (FieldInfo fi in type.GetFields())

{

 DebugLog(fi.Name + ": " + fi.GetValue(p));

}

This prints:

Name: Jackson

Health: 100

The only information like this that C++ stores is data for RTTI to
support dynamic_cast and typeid. It’s a very small subset of what’s
available in C# since even full type names are not usually preserved

in typeid and only classes with virtual functions are supported by
dynamic_cast.

So if we want to store this information, we need to store it ourselves.
We could do this manually by implementing our own reflection
system:

// Different types our reflection system supports

enum class Type

{

 None,

 ConstCharPointer,

 Uint32,

};

// Reflected values

struct Value

{

 // Type of the value

 Type Type;

 // Pointer to the value

 void* ValuePtr;

};

// "Interface" to "implement" to make a class support

reflection

struct IReflectable

{

 using MemberName = const char*;

 // Get names of the class' fields

 virtual const MemberName* GetFieldNames() = 0;

 // Get a value of a class instance's field

 virtual Value GetFieldValue(MemberName* name) = 0;

};

// Player supports reflection

class Player : IReflectable

{

 // Names of the fields. Initialized after the class.

 static const char* const FieldNames[3];

public:

 const char* Name;

 uint32_t Health;

 virtual const MemberName* GetFieldNames() override

 {

 return FieldNames;

 }

 virtual Value GetFieldValue(MemberName* name)

override

 {

 // strcmp is a Standard Library function

returning 0 when strings equal

 if (!strcmp(name, "Name"))

 {

 return { Type::ConstCharPointer, &Name };

 }

 else if (!strcmp(name, "Health"))

 {

 return { Type::Uint32, &Health };

 }

 return { Type::None, nullptr };

 }

};

const char* const Player::FieldNames[3]{ "Name",

"Health", nullptr };

Player p;

p.Name = "Jackson";

p.Health = 100;

auto fieldNames = p.GetFieldNames();

for (int32_t i = 0; fieldNames[i]; ++i)

{

 auto fieldName = fieldNames[i];

 auto fieldValue = p.GetFieldValue(fieldName);

 switch (fieldValue.Type)

 {

 case Type::ConstCharPointer:

 DebugLog(fieldName, ": ", *(const

char**)fieldValue.ValuePtr);

 break;

 case Type::Uint32:

 DebugLog(fieldName, ": ", *

(uint32_t*)fieldValue.ValuePtr);

 break;

 }

}

This prints the same logs:

Name: Jackson

Health: 100

Manually adding all of this is quite tedious and creates a
maintenance problem as the code changes. As a result, there are
many reflection libraries available for C++ to remove a lot of the
boilerplate:

Boost PFR provides basic reflection
Magic Enum supports only enums
RTTR has more complete reflection features

For example, in RTTR we can write just this:

#include <rttr/registration>

using namespace rttr;

https://www.boost.org/doc/libs/1_75_0/doc/html/boost_pfr.html
https://github.com/Neargye/magic_enum
https://github.com/rttrorg/rttr

class Player

{

 const char* Name;

 uint32_t Health;

};

RTTR_REGISTRATION

{

 registration::class_<Player>("Player")

 .property("Name", &Player::Name)

 .property("Health", &Player::Health);

}

Player p;

p.Name = "Jackson";

p.Health = 100;

type t = type::get<Player>();

for (auto& prop : t.get_properties())

{

 DebugLog(prop.get_name(), ": ", prop.get_value(p));

}

Conclusion

Neither language is a subset of the other. In almost every chapter of
this book, we’ve seen how the C++ version of various language
features is larger and more powerful than the C# equivalent. In this
chapter we’ve seen the opposite: several features that C# has that
C++ doesn’t.

We’ve also seen how to at least approximate that functionality in
C++ when it’s desired. Sometimes, as in the case of fixed
statements and buffers, there’s no need for such a feature in C++
and we can simply stop using the C# feature.

Other times, as with extension methods and properties, there’s no
direct equivalent and we’ll need to tweak our design to fit C++ norms
such as the use of free functions and “GetX” functions.

Then there are some cases where libraries are available to
implement similar functionality on top of the C++ language. This is
the case with decimal, nameof, and reflection. The powerful,
relatively low-level tools that C++ provides makes the effecient
implementation of such libraries possible.

Finally, there are some missing C# features whose alternatives
depend on the Standard Library specifically. We’ll see those
alternatives later on in the book.

37. Missing Language Features

Fixed Statements

In an unsafe context in C#, we can use fixed statements to prevent
the GC from moving an object:

// Unsafe function creates an unsafe context for its body

unsafe void ZeroBytes(byte[] bytes)

{

 // Prevent moving the array

 fixed (byte* pBytes = bytes)

 {

 // Access the array via a pointer

 for (int i = 0; i < bytes.Length; ++i)

 {

 pBytes[i] = 0;

 }

 }

}

Since C++ has no GC, our objects never move around. We therefore
have no need for a fixed statement as we can simply take the
address of objects:

struct ByteArray

{

 int32_t Length;

 uint8_t* Bytes;

};

void ZeroBytes(ByteArray& bytes)

{

 ByteArray* pBytes = &bytes;

 for (int i = 0; i < pBytes->Length; ++i)

 {

 pBytes->Bytes[i] = 0;

 }

}

There’s often no reason to bother with taking a pointer though. This
is because objects are passed by value by default. In the above
example, we take a ByteArray& lvalue reference in ZeroBytes
because taking just a ByteArray would cause a copy to be made
when calling the function. So we normally already have a pointer-like
reference to objects and can simply use it directly:

void ZeroBytes(ByteArray& bytes)

{

 for (int i = 0; i < bytes.Length; ++i)

 {

 bytes.Bytes[i] = 0;

 }

}

Fixed Size Buffers

Another meaning of fixed in C# is to create a buffer of primitives
(bool, byte, char, short, int, long, sbyte, ushort, uint, ulong,
float, or double) that is directly part of a class or struct rather than
a managed reference as we’d get with an array such as byte[]:

// An unsafe context is required

unsafe struct FixedLengthArray

{

 // 16 integers are directly part of the struct

 // This is _not_ a managed reference to an int[]

 public fixed int Elements[16];

}

C++ has no need for fixed size buffers as it directly supports arrays:

struct FixedLengthArray

{

 // 16 integers are directly part of the struct

 int32_t Elements[16];

};

Further, there’s no restriction to only use primitive types. Any type
may be used:

struct Vector2

{

 float X;

 float Y;

};

struct FixedLengthArray

{

 // 16 Vector2s are directly part of the struct

 Vector2 Elements[16];

};

Properties

C# structs and classes support a special kind of function called
“properties” that give the illusion that the user is referencing a field
rather than calling a function:

class Player

{

 // Conventionally called the "backing field"

 string m_Name;

 // Property called Name of type string

 public string Name

 {

 // Its "get" function takes no parameters and

must return the property

 // type: string

 get

 {

 return m_Name;

 }

 // The "set" function is implicitly passed a

single parameter of the

 // property type (string) and must return void

 set

 {

 m_Name = value;

 }

 }

}

Player p = new Player();

// Call "set" on the Name property and pass "Jackson" as

the value parameter

p.Name = "Jackson";

// Call "get" on the Name property and get the returned

string

DebugLog(p.Name);

When the bodies of the get and set functions and the “backing field”
are trivial, as shown above, automatically-implemented properties
can be used to tell the compiler to generate this boilerplate:

class Player

{

 public string Name { get; set; }

}

C++ doesn’t have properties. Instead, naming conventions are
typically used to create pairs of “get” and “set” functions. Here’s a
popular naming convention:

struct Player

{

 const char* m_Name;

 const char* GetName() const

 {

 return m_Name;

 }

 void SetName(const char* value)

 {

 m_Name = value;

 }

};

Player p{};

p.SetName("Jackson");

DebugLog(p.GetName());

Another popular convention relies on overloading to eliminate the
“Get” and “Set” prefixes:

struct Player

{

 const char* m_Name;

 const char* Name() const

 {

 return m_Name;

 }

 void Name(const char* value)

 {

 m_Name = value;

 }

};

Player p{};

p.Name("Jackson");

DebugLog(p.Name());

Whichever convention is chosen, macros can be used to remove the
boilerplate:

// Macro to create a property

#define AUTO_PROPERTY(propType, propName) \

 propType m_##propName; \

 const propType& propName() const \

 { \

 return m_##propName; \

 } \

 void propName(const propType& value) \

 { \

 m_##propName = value; \

 }

struct Player

{

 // Create the property

 AUTO_PROPERTY(const char*, Name)

};

Player p{};

p.Name("Jackson");

DebugLog(p.Name());

Extern

To call functions implemented outside of the .NET environment, C#
can declare them as extern. Typically this is used to call into C or
C++ code:

using System.Runtime.InteropServices;

public static class WindowsApi

{

 // This function is implemented in Windows'

User32.dll

 [DllImport("User32.dll", CharSet=CharSet.Unicode)]

 public static extern int MessageBox(

 IntPtr handle, string message, string caption,

int type);

}

// Call the external function

WindowsApi.MessageBox((IntPtr)0, "Hello!", "Title", 0);

The extern keyword in C++ has a different meaning: implemented in
another translation unit. To call functions in another DLL, we use our
platform’s API to load the DLL, call functions, then unload it. Here’s
how we can do that with the Windows API:

// Platform API that provides DLL access

#include <windows.h>

// Load the DLL

auto dll = LoadLibraryA("User32.dll");

// Get the address of the MessageBoxA function (ASCII

version of MessageBox)

auto proc = GetProcAddress(dll, "MessageBoxA");

// Cast to the appropriate kind of function pointer

auto mb = (int32_t(*)(void*, const char*, const char*,

uint32_t))(proc);

// Call MessageBoxA via the function pointer

(*mb)(nullptr, "Hello!", "Title", 0);

// Unload the DLL

FreeLibrary(dll);

The .NET environment takes care of loading and unloading DLLs
referenced by [DllImport] as well as creating function pointers to
the associated extern functions. As a trade-off, we lose control over
elements of the process such as timing and error handling.

For multi-platform C++ code, it’s typical to wrap this platform-specific
functionality in an abstraction layer that uses the preprocessor to
make the right calls. For example:

///////////////

// platform.hpp

///////////////

// Windows

#ifdef _WIN32

 #include <windows.h>

// Non-Windows (e.g. macOS)

#else

 // TODO

#endif

class Platform

{

#if _WIN32

 using MessageBoxFuncPtr = int32_t(*)(

 void*, const char*, const char*, uint32_t);

 HMODULE dll;

 MessageBoxFuncPtr mb;

#else

 // TODO

#endif

public:

 Platform()

 {

#if _WIN32

 dll = LoadLibraryA("User32.dll");

 mb = (MessageBoxFuncPtr)(GetProcAddress(dll,

"MessageBoxA"));

#else

 // TODO

#endif

 }

 ~Platform()

 {

#if _WIN32

 FreeLibrary(dll);

#else

 // TODO

#endif

 }

 // Abstracts calls to MessageBoxA on Windows and

something else on other

 // platforms (e.g. macOS)

 void MessageBox(const char* message, const char*

title)

 {

#if _WIN32

 (*mb)(nullptr, message, title, 0);

#else

 // TODO

#endif

 }

};

///////////

// game.cpp

///////////

#include "platform.hpp"

Platform platform{};

platform.MessageBox("Hello!", "Title");

One alternative to using preprocessor directives like this is to create
different files per platform: platform_windows.cpp,
platform_macos.cpp, etc. Each contains an implementation of the
Platform class with code appropriate for the platform it’s intended to
be compiled for. The project can then be configured to only compile
one of these files so there will be no link time conflict as only one
Platform class will exist.

Extension Methods

C# gives the illusion that we can add methods to classes and structs.
These are not really added though as they are still static functions
outside the class or struct. C# just allows for them to be called on
instances of the class or struct they “extend”:

public static class ArrayExtensions

{

 // Extension method on float[] because the first

parameter has "this"

 public static float Average(this float[] array)

 {

 float sum = 0;

 foreach (float cur in array)

 {

 sum += cur;

 }

 return sum / array.Length;

 }

}

float[] array = { 1, 2, 3 };

// Call the extension method like it's a method of

float[]

DebugLog(array.Average()); // 2

// Or call it normally

DebugLog(ArrayExtensions.Average(array));

The first version (array.Average()) is rewritten by the compiler into
the second version (ArrayExtensions.Average(array)). Extension
methods don’t get any special access to the class or struct they
contain. For example, they can’t access private fields.

The C++ version of this is similar to the second version: we typically
write a “free function” outside of any class that takes the class to
“extend” as a parameter:

float Average(float* array, int32_t length)

{

 float sum = 0;

 for (int32_t i = 0; i < length; ++i)

 {

 sum += array[i];

 }

 return sum / length;

}

float array[] = { 1, 2, 3 };

DebugLog(Average(array, 3)); // 2

Functions like this could be put into a namespace or made into static
member functions of a class, but the principal remains: the function
is disconnected from what it “extends” with no special access to it.

Checked Arithmetic

C# features the checked keyword to perform runtime checks on
arithmetic. We can opt into this on a per-expression basis or for a
whole block:

public class Player

{

 public uint Health;

 public void TakeDamage(uint amount)

 {

 // Opt into arithmetic checking

 checked

 {

 // If this underflows, an OverflowException

is thrown

 Health -= amount;

 }

 }

}

Player p = new Player{ Health = 100 };

// OK: Health is now 50

p.TakeDamage(50);

// OverflowException: tried to underflow Health to -20

p.TakeDamage(70);

C++ doesn’t have built-in arithmetic checking. Instead, we have a
few options. First, we can perform our own manual arithmetic
checks:

struct OverflowException

{

};

struct Player

{

 uint32_t Health;

 void TakeDamage(uint32_t amount)

 {

 if (amount > Health)

 {

 throw OverflowException{};

 }

 Health -= amount;

 }

};

Player p{ 100 };

// OK: Health is now 50

p.TakeDamage(50);

// OverflowException: tried to underflow Health to -20

p.TakeDamage(70);

Second, we can wrap numeric types in structs and overload
operators with the checks. This option is the closest match to
checked blocks in C# as it allows us to perform checks on many
operations without needing to write anything for each operation:

struct CheckedUint32

{

 uint32_t Value;

 // Conversion from uint32_t

 CheckedUint32(uint32_t value)

 : Value(value)

 {

 }

 // Overload the subtraction operator to check for

underflow

 CheckedUint32 operator-(uint32_t amount)

 {

 if (amount > Value)

 {

 throw OverflowException{};

 }

 return Value - amount;

 }

 // Implicit conversion back to uint32_t

 operator uint32_t()

 {

 return Value;

 }

};

struct Player

{

 uint32_t Health;

 void TakeDamage(uint32_t amount)

 {

 // Put Health in a wrapper struct to check its

arithmetic operators

 Health = CheckedUint32{ Health } - amount;

 }

};

Or we can create functions that perform checks. This is a close
match to checked expressions in C# that apply only to one operation:

uint32_t CheckedSubtraction(uint32_t a, uint32_t b)

{

 if (b > a)

 {

 throw OverflowException{};

 }

 return a - b;

}

struct Player

{

 uint32_t Health;

 void TakeDamage(uint32_t amount)

 {

 Health = CheckedSubtraction(Health, amount);

 }

};

This last approach is taken by libraries such as Boost Checked
Arithmetic.

The unchecked keyword isn’t present in C++ because there’s no
checked arithmetic to disable.

https://www.boost.org/doc/libs/master/libs/safe_numerics/doc/html/checked_arithmetic.html

Nameof

C#’s nameof operator gets a string name of a variable, type, or
member:

Player p = new Player();

DebugLog(nameof(p)); // p

C++ doesn’t have this feature built in, but there’s a library available
that provides a NAMEOF macro for similar functionality:

Player p{};

DebugLog(NAMEOF(p)); // p

As with the C# operator, it supports variables, types, and members.
Additionally, it supports macros, enum “flag” values, and operates at
both compile time and run time.

https://github.com/Neargye/nameof

Decimal

C# has a built-in decimal type for financial calculations and other
times where decimal places need to be represented without any
rounding:

float f = 1.0f;

for (int i = 0; i < 10; ++i)

{

 f -= 0.1f;

 DebugLog(f);

}

This prints inaccurate values because floating point can’t represent
these without rounding:

0.9

0.8

0.6999999

0.5999999

0.4999999

0.3999999

0.2999999

0.1999999

0.09999993

-7.450581E-08

If we use decimal, we avoid the rounding:

decimal d = 1.0m;

for (int i = 0; i < 10; ++i)

{

 d -= 0.1m;

 DebugLog(d);

}

This prints:

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

C++ doesn’t have a built-in decimal type, but libraries such as GMP
and decimal_for_cpp create such types. For example, in the latter
library we can write this:

#include "decimal.h"

using namespace dec;

https://gmplib.org/
https://github.com/vpiotr/decimal_for_cpp

decimal<1> d{ 1.0 };

for (int i = 0; i < 10; ++i)

{

 d -= decimal<1>{ 0.1 };

 DebugLog(d);

}

This prints what we’d expect:

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Reflection

C# implicitly stores a lot of information about the structure of the
program in the binaries it compiles to. This information is then
accessible at runtime for the C# code to query via “reflection”
methods like GetType that return classes like Type.

public class Player

{

 public string Name;

 public uint Health;

}

Player p = new Player{Name="Jackson", Health=100};

Type type = p.GetType();

foreach (FieldInfo fi in type.GetFields())

{

 DebugLog(fi.Name + ": " + fi.GetValue(p));

}

This prints:

Name: Jackson

Health: 100

The only information like this that C++ stores is data for RTTI to
support dynamic_cast and typeid. It’s a very small subset of what’s
available in C# since even full type names are not usually preserved

in typeid and only classes with virtual functions are supported by
dynamic_cast.

So if we want to store this information, we need to store it ourselves.
We could do this manually by implementing our own reflection
system:

// Different types our reflection system supports

enum class Type

{

 None,

 ConstCharPointer,

 Uint32,

};

// Reflected values

struct Value

{

 // Type of the value

 Type Type;

 // Pointer to the value

 void* ValuePtr;

};

// "Interface" to "implement" to make a class support

reflection

struct IReflectable

{

 using MemberName = const char*;

 // Get names of the class' fields

 virtual const MemberName* GetFieldNames() = 0;

 // Get a value of a class instance's field

 virtual Value GetFieldValue(MemberName* name) = 0;

};

// Player supports reflection

class Player : IReflectable

{

 // Names of the fields. Initialized after the class.

 static const char* const FieldNames[3];

public:

 const char* Name;

 uint32_t Health;

 virtual const MemberName* GetFieldNames() override

 {

 return FieldNames;

 }

 virtual Value GetFieldValue(MemberName* name)

override

 {

 // strcmp is a Standard Library function

returning 0 when strings equal

 if (!strcmp(name, "Name"))

 {

 return { Type::ConstCharPointer, &Name };

 }

 else if (!strcmp(name, "Health"))

 {

 return { Type::Uint32, &Health };

 }

 return { Type::None, nullptr };

 }

};

const char* const Player::FieldNames[3]{ "Name",

"Health", nullptr };

Player p;

p.Name = "Jackson";

p.Health = 100;

auto fieldNames = p.GetFieldNames();

for (int32_t i = 0; fieldNames[i]; ++i)

{

 auto fieldName = fieldNames[i];

 auto fieldValue = p.GetFieldValue(fieldName);

 switch (fieldValue.Type)

 {

 case Type::ConstCharPointer:

 DebugLog(fieldName, ": ", *(const

char**)fieldValue.ValuePtr);

 break;

 case Type::Uint32:

 DebugLog(fieldName, ": ", *

(uint32_t*)fieldValue.ValuePtr);

 break;

 }

}

This prints the same logs:

Name: Jackson

Health: 100

Manually adding all of this is quite tedious and creates a
maintenance problem as the code changes. As a result, there are
many reflection libraries available for C++ to remove a lot of the
boilerplate:

Boost PFR provides basic reflection
Magic Enum supports only enums
RTTR has more complete reflection features

For example, in RTTR we can write just this:

#include <rttr/registration>

using namespace rttr;

https://www.boost.org/doc/libs/1_75_0/doc/html/boost_pfr.html
https://github.com/Neargye/magic_enum
https://github.com/rttrorg/rttr

class Player

{

 const char* Name;

 uint32_t Health;

};

RTTR_REGISTRATION

{

 registration::class_<Player>("Player")

 .property("Name", &Player::Name)

 .property("Health", &Player::Health);

}

Player p;

p.Name = "Jackson";

p.Health = 100;

type t = type::get<Player>();

for (auto& prop : t.get_properties())

{

 DebugLog(prop.get_name(), ": ", prop.get_value(p));

}

Conclusion

Neither language is a subset of the other. In almost every chapter of
this book, we’ve seen how the C++ version of various language
features is larger and more powerful than the C# equivalent. In this
chapter we’ve seen the opposite: several features that C# has that
C++ doesn’t.

We’ve also seen how to at least approximate that functionality in
C++ when it’s desired. Sometimes, as in the case of fixed
statements and buffers, there’s no need for such a feature in C++
and we can simply stop using the C# feature.

Other times, as with extension methods and properties, there’s no
direct equivalent and we’ll need to tweak our design to fit C++ norms
such as the use of free functions and “GetX” functions.

Then there are some cases where libraries are available to
implement similar functionality on top of the C++ language. This is
the case with decimal, nameof, and reflection. The powerful,
relatively low-level tools that C++ provides makes the effecient
implementation of such libraries possible.

Finally, there are some missing C# features whose alternatives
depend on the Standard Library specifically. We’ll see those
alternatives later on in the book.

38. C Standard Library

Background

First, a word of caution: the C Standard Library is very old. Most of it
dates back at least 30 years and even the newer parts are about 10
years old and built to fit in with the original design. The C language
itself is also very simple. Its lack of features impacts the library
design.

For example, there are “families” of functions that all do the same
thing but on different data types. To take an absolute value of a
floating point value we call fabs for double, fabsf for float, and
fabsl for long double. In C++, we’d just overload abs with different
parameter types and the compiler would choose the right one to call.

The C++ Standard Library includes many more modern designs that
rely on C++ language features. It has that abs overloaded function,
for example. The C Standard Library is included in the C++ Standard
Library largely as part of C++’s broad goal to maintain a high degree
of compatibility with C code. There are a few parts of it that are
genuinely useful on their own, but these are few and far between.

Still, 30+ years of momentum is a powerful force and it’s extremely
common to see the C Standard Library in use even when more
modern alternatives are available. That makes it important for us to
understand as many C++ codebases will include some C Standard
Library usage.

We’re not going to go in depth and cover every little corner of the C
Standard Library in this chapter, but we’ll survey its highlights.

General Purpose

As for composition, the C++ Standard Library is made up of header
files. As of C++20, modules are also available. The C Standard
Library is available only as header files. C Standard Library header
files are named with a .h extension: math.h. These can be included
directly into C++ files: #include <math.h>. They are also wrapped by
the C++ Standard Library. The wrapped versions begin with a c and
drop the .h extension, so we can #include <cmath>. These wrapped
header files place everything in the std namespace and may also
place everything in the global namespace so both std::fabs and
::fabs work.

There’s one truly general purpose header file in the C Standard
Library: stdlib.h/cstdlib. Unlike a more focused header file like
math.h/cmath that obviously focuses on mathematics, a variety of
utilities are provided by this header. Some of the basics include
size_t, the type that the sizeof operator evaluates to, and NULL, a
null pointer constant widely used before the advent of nullptr in
C++11. The broad nature of this header file makes it hard to
compare to C#, but it can roughly be though of as the System
namespace:

#include <stdlib.h>

// sizeof() evaluates to size_t

size_t intSize = sizeof(int);

DebugLog(intSize); // Maybe 4

// NULL can be used as a pointer to indicate "null"

int* ptr = NULL;

// It's vulnerable to accidental misuse in arithemtic

int sum = NULL + NULL;

// nullptr isn't: this is a compiler error

int sum2 = nullptr + nullptr;

Before C++ introduced the new and delete operators for dynamic
memory allocation, C code would use the malloc, calloc, realloc,
and free functions. The C# equivalent of malloc is
Marshal.AllocHGlobal, realloc is Marshal.ReallocHGlobal, and
free is Marshal.FreeHGlobal:

// Allocate 1 KB of uninitialized memory

// Returns null upon failure

// Memory is untyped, so casting is required to read or

write

void* memory = malloc(1024);

// Reading it before initialization is undefined behavior

int firstInt = ((int*)memory)[0];

// Release the memory. Failing to do so is a memory leak.

free(memory);

// Allocate and initialize to all zeroes 1 KB of memory:

256 x 4 bytes

memory = calloc(256, 4);

// Re-allocate previously-allocated memory to get more or

less

// Old memory is not freed if allocation fails

memory = realloc(memory, 2048);

// Also need to release memory from calloc and realloc

free(memory);

There are some functions to parse numbers from strings, similar to
int.Parse, float.Parse, etc.:

// Parse a double

double d = atof("3.14");

DebugLog(d); // 3.14

// Parse an int

int i = atoi("123");

DebugLog(i); // 123

// Parse a float and get a pointer to its end in a string

const char* floatStr = "2.2 123.456";

char* pEnd;

float f = strtof(floatStr, &pEnd);

DebugLog(f); // 2.2

// Use the end pointer to parse more

f = strtof(pEnd, &pEnd);

DebugLog(f); // 123.456

Some generic algorithms are provided, similar to the C# Array class
as well as Random and Math:

// Seed the global randomizer

// This is not thread-safe

srand(123);

// Use the global randomizer to generate a random number

int r = rand();

DebugLog(r); // Maybe 440

// Compare pointers to ints

auto compare = [](const void* a, const void* b) {

 return *(int*)a - *(int*)b;

};

// Sort an array

int a[] = { 4, 2, 1, 3 };

qsort(a, 4, sizeof(int), compare);

DebugLog(a[0], a[1], a[2], a[3]); // 1, 2, 3, 4

// Binary search the array for 2

int valToFind = 2;

int* pVal = (int*)bsearch(&valToFind, a, 4, sizeof(int),

compare);

int index = pVal - a;

DebugLog(index); // 1

// Take an absolute value

DebugLog(abs(-10)); // 10

// Divide and also get the remainder

// stdlib.h/cstdlib also provides the div_t struct type

div_t d = div(11, 3);

DebugLog(d.quot, d.rem); // 3, 2

Finally, there’s some OS-related functionality:

// Run a system command

int exitCode = system("ping example.com");

DebugLog(exitCode); // 0 if successful

// Get an environment variable

char* path = getenv("PATH");

DebugLog(path); // Path to executables

// Register a function (lambda in this case) to be called

when the program exits

atexit([]{ DebugLog("Exiting..."); });

// Explicitly exit the program with an exit code

exit(1); // Exiting...

Math and Numbers

The next category of header in the C Standard Library relates to
mathematics. One we’ve seen throughout the book is
stdint.h/cstdint, which provides integer types via typedef. Basic
types like int have guaranteed sizes in C#, but this header file goes
above and beyond to also define types that fulfill particular
requirements:

#include <stdint.h>

int32_t i32; // Always signed 32-bit

int_fast32_t if32; // Fastest signed integer type with at

least 32 bits

intptr_t ip; // Signed integer that can hold a pointer

int_least32_t il; // Smallest signed integer with at

least 32 bits

intmax_t imax; // Biggest available signed integer

// Range of 32-bit integer values

DebugLog(INT32_MIN, INT32_MAX); // -2147483648,

2147483647

// Biggest size_t

DebugLog(SIZE_MAX); // Maybe 18446744073709551615

There are also some types in stddef.h/cstddef. Some of these are
more types that satisfy particular requirements. Unusually, there are

also types that are C++-specific in the cstddef version of this
header:

#include <cstddef>

// C and C++ types

std::max_align_t ma; // Type with the biggest alignment

std::ptrdiff_t pd; // Big enough to hold the subtraction

of two pointers

// C++-specific types

std::nullptr_t np = nullptr; // The type of nullptr

std::byte b; // An "enum class" version of a single byte

limits.h/climits also has some maximum and minimum macros,
equivalent to int.MaxValue and similar in C#:

#include <limits.h>

// Range of int values

DebugLog(INT_MIN, INT_MAX); // Maybe -2147483648,

2147483647

// Range of char values

DebugLog(CHAR_MIN, CHAR_MAX); // Maybe -128, 127

The inttypes.h/cinttypes header also has integer-related utilities.
These are needed because conversions to and from strings aren’t

built into the language as they are in C# with functions like
int.Parse:

#include <inttypes.h>

// Parse a hexadecimal string to an int

// The nullptr means we don't want to get a pointer to

the end

intmax_t i = strtoimax("f0a2", nullptr, 16);

DebugLog(i); // 61602

Similarly, float.h/cfloat provides a bunch of floating point macros
similar to what C# provides via constants like float.MaxValue:

#include <float.h>

// Biggest float

float f = FLT_MAX;

DebugLog(f); // 3.40282e+38

// Difference between 1.0 and the next larger float

float ep = FLT_EPSILON;

DebugLog(ep); // 1.19209e-07

fenv.h/cfenv gives us fine-grain control over how the CPU deals
with floating point numbers. There’s no real equivalent to this in C#:

#include <fenv.h>

// Clear CPU float exceptions. Different than C++

exceptions.

feclearexcept(FE_ALL_EXCEPT);

// Divide by zero

// Use volatile to prevent the compiler from removing

this

volatile float n = 1.0f;

volatile float d = 0.0f;

volatile float q = n / d;

// Check float exceptions to see if this was a divide by

zero or produced

// an inexact result

int divByZero = fetestexcept(FE_DIVBYZERO);

int inexact = fetestexcept(FE_INEXACT);

DebugLog(divByZero != 0); // true

DebugLog(inexact != 0); // false

// Clear float exceptions

feclearexcept(FE_ALL_EXCEPT);

// Perform a division whose quotient can't be represented

exactly

d = 10.0f;

q = n / d;

// Check float exceptions

divByZero = fetestexcept(FE_DIVBYZERO);

inexact = fetestexcept(FE_INEXACT);

DebugLog(divByZero != 0); // false

DebugLog(inexact != 0); // true

Strings and Arrays

The next category of headers deals with strings and arrays. Let’s
start with string.h/cstring which has a lot of operations that are
built into the string class, managed arrays, and Buffer in C#:

#include <string.h>

// Compare strings: 0 for equality, -1 for less than, 1

for greater than

DebugLog(strcmp("hello", "hello")); // 0

DebugLog(strcmp("goodbye", "hello")); // -1

// Copy a string

char buf[32];

strcpy(buf, "hello");

DebugLog(buf);

// Concatenate strings

strcat(buf + 5, " world");

DebugLog(buf); // hello world

// Count characters in a string (its length)

// This iterates until NUL is found

DebugLog(strlen(buf)); // 11

// Get a pointer to the first occurrence of a character

in a string

DebugLog(strchr(buf, 'o')); // o world

// Get a pointer to the first occurrence of a string in a

string

DebugLog(strstr(buf, "ll")); // llo world

// Get a pointer to the next "token" in a string,

separated by a delimiter

// Stores state globally: not thread-safe

char* next = strtok(buf, " ");

DebugLog(next); // hello

next = strtok(nullptr, ""); // null means to continue the

global state

DebugLog(next); // world

// Copy the first three bytes of buf ("hel") to later in

the buffer

memcpy(buf + 3, buf, 3);

DebugLog(buf); // helhelworld

// Set all bytes in buf to 65 and put a NUL at the end

memset(buf, 65, 31);

buf[31] = 0;

DebugLog(buf); // AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

wchar.h/cwchar is the equivalent for “wide” characters. Support for
various character types in C# is provided by the System.Text
namespace, which has similar functionality to what’s in this header:

#include <wchar.h>

wchar_t input[] = L"foo,bar,baz";

// Get the first token, using 'state' to hold the

tokenization state

wchar_t* state;

wchar_t* token = wcstok(input, L",", &state);

DebugLog(token); // foo

// Get the second token

token = wcstok(nullptr, L",", &state);

DebugLog(token); // bar

// Get the third token

token = wcstok(nullptr, L",", &state);

DebugLog(token); // baz

ctype.h/cctype has functions related to just characters. C’s lack of a
bool type means 0 is used instead of false and non-0 is used
instead of true. C# doesn’t use ASCII natively, so this is
approximated by ASCIIEncoding there:

#include <ctype.h>

// Check for alphabetical characters

DebugLog(isalpha('a') != 0); // true

DebugLog(isalpha('9') != 0); // false

// Check for digit characters

DebugLog(isdigit('a') != 0); // false

DebugLog(isdigit('9') != 0); // true

// Change to uppercase

DebugLog(toupper('a')); // A

wctype.h/cwctype is the equivalent for “wide” characters. A lot of this
is built into the char type in C#:

#include <wctype.h>

// Check for alphabetical characters

DebugLog(iswalpha(L'a') != 0); // true

DebugLog(iswalpha(L'9') != 0); // false

// Check for digit characters

DebugLog(iswdigit(L'a') != 0); // false

DebugLog(iswdigit(L'9') != 0); // true

// Change to uppercase

DebugLog(towupper(L'a')); // A

uchar.h/cuchar has character conversion functions. The “encoding”
classes in C#’s System.Text namespace provide for these
conversions in .NET:

// Convert to UTF-16

char input[] = "A";

char16_t output;

mbstate_t state{};

size_t len = mbrtoc16(&output, input, MB_CUR_MAX,

&state);

DebugLog(len); // 1

uint8_t* outputBytes = (uint8_t*)&output;

DebugLog(outputBytes[0], outputBytes[1]); // 65, 0

Language Tools

This category of header files includes a range of tools that aren’t part
of the C or C++ language, but are closely tied to it or would be built
into other languages.

First up is stdarg.h/cstdarg. This header contains the required types
and macros to implement variadic function. These are uncommonly
used in C++ since variadic templates are available, easier to use,
and type-safe. In C#, we’d use the params keyword to have the
compiler generate a managed array of arguments at the call site.
Here’s how to use the va_ macros to implement a variadic function:

#include <stdarg.h>

// The "..." indicates a variadic function

void PrintLogs(int count, ...)

{

 // A va_list holds the state

 va_list args;

 // Use the "va_start" macro to start getting args

 va_start(args, count);

 for (int i = 0; i < count; ++i)

 {

 // Use the "va_arg" macro to get the next arg

 const char* log = va_arg(args, const char*);

 DebugLog(log);

 }

 // Use the "va_end" macro to stop getting args

 va_end(args);

}

// Call the variadic function

PrintLogs(3, "foo", "bar", "baz"); // foo, bar, baz

Next there is assert.h/cassert containing the assert macro. If the
NDEBUG preprocessor symbol is defined, this checks if a condition is
false and calls std::abort to end the program, possibly with
additional debugging steps such as breaking an interactive
debugger. If the condition is true, nothing happens. If NDEBUG isn’t
defined, the condition itself is stripped out of the program and not
compiled. In C#, we’d use the [Conditional] attribute to build an
assert or make use of the existing Debug.Assert:

#include <assert.h>

assert(2 + 2 == 4); // OK

assert(2 + 2 == 5); // Calls std::abort and maybe more

Then we have setjmp.h/csetjmp, used to implement a high-powered
version of goto. This can jump outside of a function, but by breaking
these normal language rules eschews the normal destructor calls
that are used to clean up local objects. None of this is available in
C#:

#include <setjmp.h>

// Saved execution state

jmp_buf buf;

// Use volatile to prevent the compiler from optimizing

this away

volatile int count = 0;

void Goo()

{

 count++;

 DebugLog("Goo calling longjmp with", count);

 // Go to the saved execution state and pass 'count'

as the 'status'

 longjmp(buf, count);

}

void Foo()

{

 DebugLog("Foo");

 // Save the execution state

 // When longjmp is called, execution goes here

 // The passed 'status' is "returned" from setjmp

 int status = setjmp(buf);

 DebugLog("Foo got status", status);

 if (status >= 3)

 {

 return;

 }

 DebugLog("Foo calling Goo");

 Goo();

}

This prints the following:

Foo

Foo got status, 0

Foo calling Goo

Goo calling longjmp with, 1

Foo got status, 1

Foo calling Goo

Goo calling longjmp with, 2

Foo got status, 2

Foo calling Goo

Goo calling longjmp with, 3

Foo got status, 3

Lastly, there’s errno.h/cerrno. This header provides the errno macro
that holds a global error flag used by several C Standard Library
functions. This is generally considered to be a poor way of handling
errors as it’s not thread-safe and the caller needs to know to check
something that isn’t part of the function signature. It’s never used in
C#, so there’s really no equivalent. It is widely used in the C
Standard Library though, so let’s see how it works:

#include <errno.h>

// Pass an invalid argument to sqrt (from math.h)

float root = sqrt(-1.0f);

// It returns NaN

DebugLog(root); // NaN

// It signals this error by setting errno to EDOM (out of

domain)

DebugLog(errno); // Maybe 33

// Check that this is what was set

DebugLog(errno == EDOM); // true

System Integration

The last category of header files deals with the system on which we
run our programs. Let’s start with time.h/ctime which is like a basic
version of DateTime in C#:

#include <time.h>

// Get the time in the return value and in the pointer we

pass

time_t t1{};

time_t t2 = time(&t1);

DebugLog(t1, t2); // Maybe 1612052060, 1612052060

// Get the amount of CPU time the program has used

// Not in relation to any particular time (like the UNIX

epoch)

clock_t c1 = clock();

// Do something expensive we want to benchmark

volatile float f = 123456;

for (int i = 0; i < 1000000; ++i)

{

 f = sqrtf(f);

}

// Check the clock again

clock_t c2 = clock();

double secs = ((double)(c2) - c1) / CLOCKS_PER_SEC;

DebugLog("Took", secs, "seconds"); // Maybe: Took 0.011

seconds

We also have signal.h/csignal to deal with OS signals. This allows
us to deal with signals such as being terminated by the OS and to
raise such signals ourselves. This isn’t normally done with C# as the
.NET environment our program is running in handles such signals:

#include <signal.h>

signal(SIGTERM, [](int val){DebugLog("terminated with",

val); });

raise(SIGTERM); // Maybe: terminated with 15

Many C Standard Library functions use a global “locale” setting to
determine how they work. The locale.h/clocale header file has
functions to change this setting. It’s similar to the thread-specific
CultureInfo in C#:

#include <locale.h>

// Set the locale for everything to Japanese

// This is global: not thread-safe

setlocale(LC_ALL, "ja_JP.UTF-8");

// Get the global locale

lconv* lc = localeconv();

DebugLog(lc->currency_symbol); // ¥

And finally, we’ll end with the header that enables “Hello, world!” in
C: stdio.h/cstdio. This is like Console in C#. There’s also file
system access, similar to the methods of File in C#:

#include <stdio.h>

// Output a formatted string to stdout

// The first string is the "format string" with value

placeholders: %s %d

// Subsequent values must match the placeholders' types

// This is a variadic function

printf("%s %d\n", "Hello, world!", 123); // Hello, world!

123

// Read a value from stdin

// The same "format string" is used to accept different

types

int val;

int numValsRead = scanf("%d", &val);

DebugLog(numValsRead); // {1 if the user entered a

number, else 0}

if (numValsRead == 1)

{

 DebugLog(val); // {Number the user typed}

}

// Open a file, seek to its send, get the position, and

close it

FILE* file = fopen("/path/to/myfile.dat", "r");

fseek(file, 0, SEEK_END);

long len = ftell(file);

fclose(file);

DebugLog(len); // {Number of bytes in the file}

// Delete a file

int deleted = remove("/path/to/deleteme.dat");

DebugLog(deleted == 0); // True if the file was deleted

// Rename a file

int renamed = rename("/path/to/oldname.dat",

"/path/to/newname.dat");

DebugLog(renamed == 0); // True if the file was renamed

Conclusion

The C Standard Library is very old, but still very commonly used.
Being so old and based on the much less powerful C, a lot of its
design leaves a lot to be desired. The global states used by
functions like rand and strtok and macros like errno aren’t thread-
safe and are difficult to understand how to use correctly. Using
special int values, even inconsistently, instead of more structured
outputs like exceptions and enumerations is similarly difficult to use.

Regardless of any complaints we may have about the C Standard
Library’s design, we still need to know how to use it. The C++
Standard Library offers alternatives to much of what we’ve seen here
in this chapter, but that’s not always the case. Sure, we can swap in
<random> for rand, <chrono> for time, and <filesystem> for remove,
but assert and stdint.h remain the most modern standardized
ways of achieving those areas of functionality.

From here on we’ll be covering the C++ part of the C++ Standard
Library. We’ll see a lot more modern designs for areas like
containers, algorithms, I/O, strings, math, and threading!

39. Language Support Library

Source Location

Let’s start with an easy one that was just added in C++20:
<source_location>. Right away we see how the naming convention
of the C++ Standard Library differs from the C Standard Library and
it’s C++ wrappers. The C Standard Library header file name would
likely be abbreviated into something like srcloc.h. The C++ wrapper
would then be named csrcloc. The C++ Standard Library usually
prefers to spell out names more verbosely in snake_case and without
any extension, .h or otherwise.

Within the <source_location> header file we see the naming
convention continue with the source_location class. There isn’t
always a 1:1 mapping, but snake_case is almost always used. The
source_location class is placed in the std namespace, so we
typically talk about it as std::source_location. The std namespace
is reserved for the C++ Standard Library.

Now to the actual purpose of std::source_location. As its name
suggests, it provides a facility for expressing a location in the source
code. It has copy and move constructors, but no way for us to create
one from scratch. Instead, we call its static member function current
and one is returned:

#include <source_location>

void Foo()

{

 std::source_location sl =

std::source_location::current();

 DebugLog(sl.line()); // 42

 DebugLog(sl.column()); // 61

 DebugLog(sl.file_name()); // example.cpp

 DebugLog(sl.function_name()); // void Foo()

}

The file_name member function provides a replacement for the
__FILE__ macro. Likewise, line replaces __LINE__. We also get
column and function_name which aren’t present in standardized
macro form. In C#, the StackTrace and StackFrame classes are
roughly equivalent to source_location.

It’s worth noting here at the start that a lot of code will include a
using statement to remove the need to type std:: over and over. It’s
a namespace like any other, so we have all the normal options. For
example, a using namespace std; at the file level right after the
#include lines is common:

#include <source_location>

using namespace std;

void Foo()

{

 source_location sl = source_location::current();

 DebugLog(sl.line()); // 43

 DebugLog(sl.column()); // 61

 DebugLog(sl.file_name()); // example.cpp

 DebugLog(sl.function_name()); // void Foo()

}

To avoid bringing the entire Standard Library into scope, we might
using just particular classes:

#include <source_location>

using std::source_location;

void Foo()

{

 source_location sl = source_location::current();

 DebugLog(sl.line()); // 43

 DebugLog(sl.column()); // 61

 DebugLog(sl.file_name()); // example.cpp

 DebugLog(sl.function_name()); // void Foo()

}

Or we might put the using just where the Standard Library is being
used:

#include <source_location>

void Foo()

{

 using namespace std;

 source_location sl = source_location::current();

 DebugLog(sl.line()); // 43

 DebugLog(sl.column()); // 61

 DebugLog(sl.file_name()); // example.cpp

 DebugLog(sl.function_name()); // void Foo()

}

All of these are commonly seen in C++ codebases and provide good
options for removing a lot of the std:: clutter. There is, however, one
bad option which should be avoided: adding using at the top level of
header files. Because header files are essentially copied and pasted
into other files via #include, these using statements introduce the
Standard Library to name lookup for all the files that #include them.
When header files #include other header files, this impact extends
even further:

// top.h

#include <source_location>

using namespace std; // Bad idea

// middlea.h

#include "top.h" // Pastes "using namespace std;" here

// middleb.h

#include "top.h" // Pastes "using namespace std;" here

// bottoma.cpp

#include "middlea.h" // Pastes "using namespace std;"

here

// bottomb.cpp

#include "middlea.h" // Pastes "using namespace std;"

here

// bottomc.cpp

#include "middleb.h" // Pastes "using namespace std;"

here

// bottomd.cpp

#include "middled.h" // Pastes "using namespace std;"

here

The effects of using namespace std; in top.h have spread to the
files that #include it: middlea.h and middleb.h. That then spreads to
the files that #include those: bottoma.cpp, bottomb.cpp,
bottomc.cpp, and bottomd.cpp. It’s best to avoid this to so as to not
undo the compartmentalization that namespaces provide and
instead let individual files choose when and where they want to
breach it:

// top.h

#include <source_location>

struct SourceLocationPrinter

{

 static void Print()

 {

 // OK: only applies to this function, not files

that #include

 using namespace std;

 source_location sl = source_location::current();

 DebugLog(sl.line()); // 43

 DebugLog(sl.column()); // 61

 DebugLog(sl.file_name()); // example.cpp

 DebugLog(sl.function_name()); // void

SourceLocationPrinter::Print()

 }

};

// middlea.h

#include "top.h" // Does not paste "using namespace std;"

here

// middleb.h

#include "top.h" // Does not paste "using namespace std;"

here

Initializer List

Next up let’s look at <initializer_list>. We touched on
std::initializer_list before, but now we’ll take a closer look. An
instance of this class template is automatically created and passed
to the constructor when we use braced list initialization:

struct AssetLoader

{

 AssetLoader(std::initializer_list<const char*> paths)

 {

 for (const char* path : paths)

 {

 DebugLog(path);

 }

 }

};

AssetLoader loader = {

 "/path/to/model",

 "/path/to/texture",

 "/path/to/audioclip"

};

We could rewrite this to create the std::initializer_list<const
char*> manually, but this relies on that same braced list initialization
as std::initializer_list doesn’t have any direct way to create an
empty instance:

AssetLoader loader(std::initializer_list<const char*>{

 "/path/to/model",

 "/path/to/texture",

 "/path/to/audioclip"

});

As we see in the AssetLoader constructor, range-based for loops
work with std::initializer_list. There’s also a size member
function, but there’s no index operator so we can’t use a typical for
loop:

AssetLoader(std::initializer_list<const char*> paths)

{

 // OK: there's a size member function

 for (size_t i = 0; i < paths.size(); ++i)

 {

 // Compiler error: no operator[int]

 DebugLog(paths[i]);

 }

}

The C# equivalent is to take a params managed array. The compiler
builds that managed array for us at the call site like how a
std::initializer_list is built for us.

Type Info and Index

We’ve also seen a little bit of <typeinfo> when looking at RTTI.
When we use typeid, we get back a std::type_info which is like a
lightweight version of the C# Type class:

#include <typeinfo>

struct Vector2

{

 float X;

 float Y;

};

struct Vector3

{

 float X;

 float Y;

 float Z;

};

Vector2 v2{ 2, 4 };

Vector3 v3{ 2, 4, 6 };

// All constructors are deleted, but we can still get a

reference

const std::type_info& ti2 = typeid(v2);

const std::type_info& ti3 = typeid(v3);

// There are only three public members

// They are all implementation-specific

DebugLog(ti2.name()); // Maybe struct Vector2

DebugLog(ti2.hash_code()); // Maybe 3282828341814375180

DebugLog(ti2.before(ti3)); // Maybe true

Relatedly, <typeinfo> defines the bad_typeid class that’s thrown as
an exception when trying to take the typeid of a null pointer to a
polymorphic class. In C# we’d get a NullReferenceException instead
of this when we try to write nullObj.GetType():

#include <typeinfo>

struct Vector2

{

 float X;

 float Y;

 // A virtual function makes this class polymorphic

 virtual bool IsNearlyZero(float epsilonSq)

 {

 return abs(X*X + Y*Y) < epsilonSq;

 }

};

void Foo()

{

 Vector2* pVec = nullptr;

 try

 {

 // Try to take typeid of a null pointer to a

polymorphic class

 DebugLog(typeid(*pVec).name());

 }

 // This particular exception is thrown

 catch (const std::bad_typeid& e)

 {

 DebugLog(e.what()); // Maybe "Attempted a typeid

of nullptr pointer!"

 }

}

There’s also a bad_cast class that’s thrown when we try to
dynamic_cast two unrelated types. This is the equivalent of the C#
InvalidCastException class:

#include <typeinfo>

struct Vector2

{

 float X;

 float Y;

 virtual bool IsNearlyZero(float epsilonSq)

 {

 return abs(X*X + Y*Y) < epsilonSq;

 }

};

struct Vector3

{

 float X;

 float Y;

 float Z;

 virtual bool IsNearlyZero(float epsilonSq)

 {

 return abs(X*X + Y*Y + Z*Z) < epsilonSq;

 }

};

void Foo()

{

 Vector3 vec3{};

 try

 {

 Vector2& vec2 = dynamic_cast<Vector2&>(vec3);

 }

 catch (const std::bad_cast& e)

 {

 DebugLog(e.what()); // Maybe "Bad dynamic_cast!"!

 }

}

The <typeindex> header provides the std::type_index class, not an
integer, which wraps the std::type_info we saw above. This class
provides some overloaded operators so we can compare them in
various ways, not just with the before member function:

#include <typeindex>

struct Vector2

{

 float X;

 float Y;

};

struct Vector3

{

 float X;

 float Y;

 float Z;

};

Vector2 v2{ 2, 4 };

Vector3 v3{ 2, 4, 6 };

// Pass a std::type_info to the constructor

const std::type_index ti2{ typeid(v2) };

const std::type_index ti3{ typeid(v3) };

// Some member functions from std::type_info carry over

DebugLog(ti2.name()); // Maybe struct Vector2

DebugLog(ti2.hash_code()); // Maybe 3282828341814375180

// Overloaded operators are provided for comparison

DebugLog(ti2 == ti3); // false

DebugLog(ti2 < ti3); // Maybe true

DebugLog(ti2 > ti3); // Maybe false

The C# Type class can’t be compared directly, so we’d instead
compare something like its fully-qualified name string.

Compare

C++20 introduced the three-way comparison operator: x <=> y. This
allows us to overload one operator stating how our class compares
to another class. We need return an object that supports all of the
individual comparison operators: <, <=, >, >=, ==, and !=. Rather than
defining our own class to do that, the Standard Library provides
some built-in classes via the <compare> header. For example, we can
return a std::strong_ordering via one of its static data members:

#include <compare>

struct Integer

{

 int Value;

 std::strong_ordering operator<=>(const Integer&

other) const

 {

 // Determine the relationship once

 return Value < other.Value ?

 std::strong_ordering::less :

 Value > other.Value ?

 std::strong_ordering::greater :

 std::strong_ordering::equal;

 }

};

Integer one{ 1 };

Integer two{ 2 };

std::strong_ordering oneVsTwo = one <=> two;

// All the individual comparison operators are supported

DebugLog(oneVsTwo < 0); // true

DebugLog(oneVsTwo <= 0); // true

DebugLog(oneVsTwo > 0); // false

DebugLog(oneVsTwo >= 0); // false

DebugLog(oneVsTwo == 0); // false

DebugLog(oneVsTwo != 0); // true

There are similar classes for weaker comparison results:
std::weak_ordering and std::partial_ordering. There are also
helper functions that call all of these operators on any of these
comparison classes so we can write this instead:

DebugLog(std::is_lt(oneVsTwo)); // true

DebugLog(std::is_lteq(oneVsTwo)); // true

DebugLog(std::is_gt(oneVsTwo)); // false

DebugLog(std::is_gteq(oneVsTwo)); // false

DebugLog(std::is_eq(oneVsTwo)); // false

DebugLog(std::is_neq(oneVsTwo)); // true

Helper functions are provided to get these ordering class objects,
even from primitives:

std::strong_ordering so = std::strong_order(1, 2);

std::weak_ordering wo = std::weak_order(1, 2);

std::partial_ordering po = std::partial_order(1, 2);

std::strong_ordering sof =

std::compare_strong_order_fallback(1, 2);

std::weak_ordering wof =

std::compare_weak_order_fallback(1, 2);

std::partial_ordering pof =

std::compare_partial_order_fallback(1, 2);

There’s no equivalent to the <=> operator in C#, so there’s no
equivalent to this header.

Concepts

Another C++20 feature with library support is concepts. A whole host
of pre-defined concepts are available for our immediate use and for
us to extend. Here are a few of them:

#include <concepts>

template <typename T1, typename T2>

requires std::same_as<T1, T2>

bool SameAs;

template <typename T>

requires std::integral<T>

bool Integral;

template <typename T>

requires std::default_initializable<T>

bool DefaultInitializable;

SameAs<int, int>; // OK

SameAs<int, float>; // Compiler error

Integral<int>; // OK

Integral<float>; // Compiler error

struct NoDefaultCtor { NoDefaultCtor() = delete; };

DefaultInitializable<int>; // OK

DefaultInitializable<NoDefaultCtor>; // Compiler error

There are many more available for diverse needs: derived_from,
destructible, equality_comparable, copyable, invocable, and so
forth. None of these have a C# counterpart as C# generic constraints
are not customizable.

Coroutine

The final C++20 feature receiving library support is coroutine. The
<coroutine> header provides the required std::coroutine_handle
class we’ve already seen when implementing our own coroutine
“return objects.” It also provides std::suspend_never and
std::suspend_always so we don’t have to write our own versions as
we did before. Here’s how our trivial coroutine example would have
looked with std::suspend_never instead of our custom NeverSuspend
class:

#include <coroutine>

struct ReturnObj

{

 ReturnObj()

 {

 DebugLog("ReturnObj ctor");

 }

 ~ReturnObj()

 {

 DebugLog("ReturnObj dtor");

 }

 struct promise_type

 {

 promise_type()

 {

 DebugLog("promise_type ctor");

 }

 ~promise_type()

 {

 DebugLog("promise_type dtor");

 }

 ReturnObj get_return_object()

 {

 DebugLog("promise_type::get_return_object");

 return ReturnObj{};

 }

 std::suspend_never initial_suspend()

 {

 DebugLog("promise_type::initial_suspend");

 return std::suspend_never{};

 }

 void return_void()

 {

 DebugLog("promise_type::return_void");

 }

 std::suspend_never final_suspend()

 {

 DebugLog("promise_type::final_suspend");

 return std::suspend_never{};

 }

 void unhandled_exception()

 {

 DebugLog("promise_type unhandled_exception");

 }

 };

};

ReturnObj SimpleCoroutine()

{

 DebugLog("Start of coroutine");

 co_return;

 DebugLog("End of coroutine");

}

void Foo()

{

 DebugLog("Calling coroutine");

 ReturnObj ret = SimpleCoroutine();

 DebugLog("Done");

}

Here’s what this prints:

Calling coroutine

promise_type ctor

promise_type::get_return_object

ReturnObj ctor

promise_type::initial_suspend

Start of coroutine

promise_type::return_void

promise_type::final_suspend

promise_type dtor

Done

ReturnObj dtor

There’s also a trio of no-op coroutine features: std::noop_coroutine,
std::noop_coroutine_promise, and std::noop_coroutine_handle.
These implement the coroutine equivalent of a void noop() {}
function. noop_coroutine is the coroutine and it returns a
noop_coroutine_handle whose “promise” is a
noop_coroutine_promise.

C# doesn’t provide this level of customization for its iterator
functions, but we can implement IEnumerable, IEnumerable<T>,
IEnumerator, and IEnumerator<T> to take some control over
iteration. Those interfaces and their methods provide the closest
analog to this header file.

Version

As we saw when looking at the preprocessor, a <version> header
exists with a ton of macros we can use to check if various features
are available in the language and Standard Library. For example, we
can check for some of the Standard Library features we’ve seen in
this chapter:

#include <version>

// These print "true" or "false" depending on whether the

Standard Library has

// these features available

DebugLog("Standard Library concepts?", __cplusplus >=

__cpp_lib_concepts);

DebugLog("source_location?", __cplusplus >=

__cpp_lib_source_location);

C# has a handful of standardized preprocessor symbols, including
DEBUG and TRACE, but its suite is nowhere near as extensive as in
C++. Each .NET implementation, such as Unity and .NET Core, may
define its own additional symbols, such as UNITY_2020_2_OR_NEWER
and these version numbers are often correlated to available
language and library features.

Type Traits

Finally for this chapter we have <type_traits> which is used for
compile-time programming. This header predates concepts in
C++20, so a lot of it overlaps in a non-concept form. For example,
we have various constexpr variable templates that check whether
types fulfill certain criteria. These are available as static member
variables of class templates and as namespace-scope variable
templates:

#include <type_traits>

// Use a static value data member of a class template

static_assert(std::is_integral<int>::value); // OK

static_assert(std::is_integral<float>::value); //

Compiler error

// Use a variable template

static_assert(std::is_integral_v<int>); // OK

static_assert(std::is_integral_v<float>); // Compiler

error

There are tons of these available and they can check for nearly any
feature of a type. Here are some more advanced ones:

#include <type_traits>

struct Vector2

{

 float X;

 float Y;

};

struct Player

{

 int Score;

 Player(const Player& other)

 {

 Score = other.Score;

 }

};

static_assert(std::is_bounded_array_v<int[3]>); // OK

static_assert(std::is_bounded_array_v<int[]>); //

Compiler error

static_assert(std::is_trivially_copyable_v<Vector2>); //

OK

static_assert(std::is_trivially_copyable_v<Player>); //

Compiler error

Besides type checks, there are various utilities for querying types:

#include <type_traits>

DebugLog(std::rank_v<int[10]>); // 1

DebugLog(std::rank_v<int[10][20]>); // 2

DebugLog(std::extent_v<int[10][20], 0>); // 10

DebugLog(std::extent_v<int[10][20], 1>); // 20

DebugLog(std::alignment_of_v<float>); // Maybe 4

DebugLog(std::alignment_of_v<double>); // Maybe 8

We can also get modified versions of types:

#include <type_traits>

// We know T is a pointer (e.g. int*)

// We don't have a name for what it points to (e.g. int)

// Use std::remove_pointer_t to get it

template <typename T>

auto Dereference(T ptr) -> std::remove_pointer_t<T>

{

 return *ptr;

}

int x = 123;

int* p = &x;

int result = Dereference(p);

DebugLog(result); // 123

One particularly useful function is std::underlying_type which can
be used to implement safe “cast” functions to and from
enumerations:

#include <type_traits>

// "Cast" from an integer to an enum

template <typename TEnum, typename TInt>

TEnum FromInteger(TInt i)

{

 // Make sure the template parameters are an enum and

an integer

 static_assert(std::is_enum_v<TEnum>);

 static_assert(std::is_integral_v<TInt>);

 // Use is_same_v from type_traits to ensure that TInt

is the underlying type

 // of TEnum

static_assert(std::is_same_v<std::underlying_type_t<TEnum

>, TInt>);

 // Perform the cast

 return static_cast<TEnum>(i);

}

// "Cast" from an enum to an integer

template <typename TEnum>

auto ToInteger(TEnum e) -> std::underlying_type_t<TEnum>

{

 // Make sure the template parameter is an enum

 static_assert(std::is_enum_v<TEnum>);

 // Perform the cast

 return static_cast<std::underlying_type_t<TEnum>>(e);

}

enum class Color : uint64_t

{

 Red,

 Green,

 Blue

};

Color c = Color::Green;

DebugLog(c); // Green

// Cast from enum to integer

auto i = ToInteger(c);

DebugLog(i); // 1

// Cast from integer to enum

Color c2 = FromInteger<Color>(i);

DebugLog(c2); // Green

These “cast” functions imply no runtime overhead as all the checks
occur at compile time. They do, however, add safety since we’ll get a
compiler diagnostic if we accidentally try to use the wrong size of
type:

// Compiler error: short is not the underlying type

FromInteger<Color>(uint16_t{ 1 });

// Compiler warning: target integer type is too small

// The "treat warnings as errors" setting can be used to

turn this into an error

uint16_t i = ToInteger(c);

Some of this functionality exists in C# via the Type class and its
related reflection classes: FieldInfo, PropertyInfo, etc. In contrast
to C++, these all execute at runtime where their C++ counterparts
execute at compile time.

Conclusion

Some parts of C++ rely on the Standard Library. We need to use
std::initializer_list to handle braced list initialization and we
need to use std::coroutine_handle to implement coroutine return
objects. This is similar to C# that enshrines parts of the .NET API
into the language: Type, System.Single, etc.

In this chapter we’ve seen a lot of those quasi-language features as
well as some general language support functionality like
source_location and a lot of pre-defined concepts. These are
foundational elements of the language and library, but also give a
taste of what’s to come in terms of the Standard Library’s design.

40. Utilities Library

Exception

Let’s start by looking at how the Standard Library codifies error-
handling. There are a lot of kinds of errors from a lot of sources that
can be dealt with in a lot of ways, so it’s no surprise that the
Standard Library provides a lot of different approaches to error-
handling.

To begin, let’s look at the <exception> header. As in C#, exceptions
are the primary error-handling approach in C++. As C# has
System.Exception as the base class of all exceptions, C++ has
std::exception as the base class of all Standard Library exceptions.
We’re free to throw anything, not just std::exception, but the
Standard Library only throws this type and and many C++
codebases do the same.

#include <exception>

// Derive our own exception type

struct MyException : public std::exception

{

 const char* msg;

 MyException(const char* msg)

 : msg(msg)

 {

 }

 virtual const char* what() const noexcept override

 {

 return msg;

 }

};

try

{

 throw MyException{ "boom" };

}

catch (const std::exception& ex)

{

 DebugLog(ex.what()); // boom

}

This shows the standard usage pattern of C++ exceptions. When
throwing, we throw an object as opposed to a pointer to an object
allocated with the new operator. When catching, we catch by const
lvalue reference. This avoids making a copy of the exception object
and avoids accidentally changing the exception in the catch block.

All std::exception objects have a virtual what() function returning
an error message just as System.Exception has a Message property
in C#. Both C++ and C# have many types derived their base
exception classes to provide additional detail about the error. This is
done via the type system as well as the possibility of adding
additional members to the derived types. We’ll see some of those
later in this chapter.

C++ provides a way to capture these std::exception objects so we
can deal with them later. For example, we might want to catch

exceptions on one thread and re-throw them on another to provide
thread-safety.

#include <exception>

// A class that acts like a pointer to a captured

exception

std::exception_ptr capturedEx;

try

{

 // Do something that throws

 throw MyException{ "boom" };

}

// Catch anything

catch (...)

{

 // Capture the current exception

 capturedEx = std::current_exception();

}

// Later...

try

{

 // Check if an exception was captured

 if (capturedEx)

 {

 // If so, re-throw it

 std::rethrow_exception(capturedEx);

 }

}

catch (const std::exception& ex)

{

 DebugLog(ex.what()); // boom

}

There’s also a way to nest exceptions within each other:

#include <exception>

// Recursively print an exception and all its nested

exceptions

void PrintNestedExceptions(const std::exception& ex)

{

 DebugLog(ex.what());

 try

 {

 // If ex is a std::nested_exception, re-throw its

nested std::exception

 // Otherwise do nothing

 std::rethrow_if_nested(ex);

 }

 catch (const std::exception& nestedEx)

 {

 // Recurse to print the nested exception (and its

nested exceptions)

 PrintNestedExceptions(nestedEx);

 }

}

// Function that throws an exception

FILE* OpenFile(const char* path)

{

 FILE* handle = fopen(path, "r");

 if (!handle)

 {

 throw MyException{ "Error opening file" };

 }

 return handle;

}

// Function that calls a function that throws an

exception

// It throws an exception with the caught exception

nested

void PrintFirstByte(const char* path)

{

 try

 {

 // Call a function that throws an exception

 FILE* f = OpenFile(path);

 DebugLog("First byte:", fgetc(f));

 fclose(f);

 }

 // Catch OpenFile exceptions

 catch (...)

 {

 // Throw an exception with the caught exception

nested in it

 std::throw_with_nested(MyException{ "Failed to

read file" });

 }

}

try

{

 // Call a function that throws a

std::nested_exception

 PrintFirstByte("/path/to/missing/file");

}

// Catch all std::exception objects

// Includes the derived std::nested_exception type

catch (const std::exception& ex)

{

 PrintNestedExceptions(ex);

}

We have ways to customize what happens when std::terminate or
std::unexpected are called. The language says that std::terminate
is called for a variety of reasons including a noexcept function
throwing an exception or an exception that’s never caught. The

std::unexpected function was removed in C++17, but it was
previously called when a dynamic exception specification
(throw(MyException)) was violated. Dynamic exception
specifications were also removed in C++17.

#include <exception>

// Set a lambda to be called when std::terminate is

called

std::set_terminate([]() { DebugLog("std::terminate

called"); });

// Throw an exception and never catch it

// This causes std::terminate to be called

// The lambda is then called

throw MyException{ "boom" };

And finally, we can use std::uncaught_exceptions to check how
many exceptions have been thrown that haven’t yet been caught by
a catch block. A singular version, std::uncaught_exception, was
available until C++20 when it was removed. Multiple exceptions can
be uncaught when destructors throw exceptions themselves and the
plural std::uncaught_exceptions allows us to check for that:

#include <exception>

struct Second

{

 ~Second()

 {

 DebugLog("Second", std::uncaught_exceptions());

 }

};

struct First

{

 ~First()

 {

 DebugLog("First before",

std::uncaught_exceptions());

 try

 {

 Second sec;

 throw std::runtime_error{ "boom" };

 } // Note: sec destructor called

 catch (const std::exception& e)

 {

 DebugLog("First caught", e.what());

 }

 DebugLog("First after",

std::uncaught_exceptions());

 }

};

void Foo()

{

 try

 {

 First fir;

 throw std::runtime_error{ "boom" };

 } // Note: fir destructor called

 catch (const std::exception& e)

 {

 DebugLog("Foo", e.what()); // boom

 }

 First fir2;

} // Note: fir2 destructor called

This prints the following:

First before 1

Second 2

First caught boom

First after 1

Foo boom

First before 0

Second 1

First caught boom

First after 0

Standard Exceptions

Now let’s look at some of the classes that derive from
std::exception to describe particular categories of errors. These are
available in <stdexcept>:

#include <stdexcept>

int GetLastElement(int* array, int length)

{

 if (array == nullptr || length <= 0)

 {

 // C# approximation: ArgumentException

 throw std::invalid_argument{ "Invalid array" };

 }

 return array[length - 1];

}

float Sqrt(float val)

{

 if (val < 0)

 {

 // C# approximation: ArgumentNullException,

DivideByZeroException, etc.

 throw std::domain_error{ "Value must be non-

negative" };

 }

 return std::sqrt(val);

}

template <typename T, int N>

void WriteToBuffer(const T& obj, char buf[N])

{

 if (sizeof(T) > N)

 {

 // C# approximation: ArgumentException

 throw std::length_error{ "Object is too big for

the buffer" };

 }

 std::memcpy(buf, &obj, sizeof(T));

}

void CheckedIncrement(uint32_t& x)

{

 if (x == 0xffffffff)

 {

 // C# approximation: ArgumentException

 throw std::out_of_range{ "Overflow" };

 }

 x++;

}

int BinarySearch(int* array, int length)

{

 #if NDEBUG

 for (int i = 1; i < length; ++i)

 {

 if (array[i - 1] > array[i])

 {

 // C# approximation: ArgumentException

 // Note: base class of all of the above

 throw std::logic_error{ "Array isn't

sorted" };

 }

 }

 #endif

 // ...implementation...

}

The Standard Library itself throws these exception types. We’re also
free to throw them in our own code and it’s common to do so.

System Error

Next up, let’s look at the <system_error> header. As we saw in the C
Standard Library, there are a lot of “error codes” exposed to us via
mechanisms like return values and the global errno macro. These
error codes are platform-specific. The C++ Standard Library includes
a platform-independent alternative in a pair of types:
std::error_condition and std::error_category.

#include <system_error>

// Get the "generic" error category

const std::error_category& category =

std::generic_category();

DebugLog(category.name()); // Maybe "generic"

// Build an error_condition representing the "no space on

device" code

std::error_condition condition =

category.default_error_condition(ENOSPC);

DebugLog(condition.value() == ENOSPC); // true

DebugLog(condition.message()); // Maybe "no space on

device"

// There are other categories

const std::error_category& sysCat =

std::system_category();

DebugLog(sysCat.name()); // Maybe "system"

We use these classes to convert platform-specific error codes to
platform-independent error codes and then take action on them. We
get the added bonus of stronger typing since these classes aren’t
simply an int and are therefore less likely to be misused.

The reverse is also supported. We have the value member function
above to get platform-specific error codes back out of platform-
independent std::error_condition objects. We also have std:errc
which is an enum class that allows us to avoid macros like ENOSPC
and strongly-type error codes as opposed to simple int values.
These are often attached to a std::system_exception type derived
from std::exception:

#include <system_error>

try

{

 // Handle a platform-specific error: ENOSPC

 throw std::system_error{

 ENOSPC, std::generic_category(), "Disk is full"

};

}

catch (const std::system_error& e)

{

 // Platform-specific error (ENOSPC) converted to a

std::errc enumerator

 DebugLog(e.code() == std::errc::no_space_on_device);

// true

 DebugLog(e.what()); // Maybe "Disk is full: no space

on device"

}

Utility

Moving on from error-handling, let’s look at some truly generic utility
functions provied by the <utility> header:

#include <utility>

// Swap two values

int x = 2;

int y = 4;

std::swap(x, y);

DebugLog(x, y); // 4, 2

// Set a value and return the old value

int old = std::exchange(x, 6);

DebugLog(x, old); // 6, 4

// Get a const version of anything

const int& c = std::as_const(x);

DebugLog(c); // 6

// Compare integers without conversion

DebugLog(-1 > 1U); // true!

DebugLog(std::cmp_greater(-1, 1U)); // false

// Check if an integer fits in an integer type

DebugLog(std::in_range<uint8_t>(200)); // true

DebugLog(std::in_range<uint8_t>(500)); // false

// Cast to an rvalue reference

int&& rvr = std::move(x);

DebugLog(x, rvr); // 6, 6

// Forward a value as an lvalue or rvalue reference

int f1 = std::forward<int&>(x);

int f2 = std::forward<int&&>(x);

There are also a couple of utility classes available. First, we have
std::integer_sequence to deal with parameter packs of integers:

#include <utility>

// Variadic function template taking a

std::integer_sequence

template<typename T, T... vals>

void PrintInts(std::integer_sequence<T, vals...> is)

{

 // Provides the number of integers

 DebugLog(is.size());

 // Use the parameter pack to get the values

 DebugLog(vals...);

}

// Prints "3" then "123, 456, 789"

PrintInts(std::integer_sequence<int32_t, 123, 456, 789>

{});

Next we have std::pair which is a struct holding two values. This is
similar to KeyValuePair in C#:

#include <utility>

// Make a struct with an int and a float as non-static

data members

std::pair<int, float> p{ 123, 3.14f };

// Get them in two ways

DebugLog(p.first, p.second); // 123, 3.14

DebugLog(std::get<0>(p), std::get<1>(p)); // 123, 3.14

// We can also use std::make_pair to use type deduction

to avoid

// specifying the types ourselves

p = std::make_pair(123, 3.14f);

DebugLog(p.first, p.second); // 123, 3.14

// make_pair is less necessary in C++17 with template

argument deduction

std::pair p2{ 456, 2.2f };

DebugLog(p2.first, p2.second); // 456, 2.2

// std::swap works with std::pair

std::swap(p, p2);

DebugLog(p.first, p.second); // 456, 2.2

DebugLog(p2.first, p2.second); // 123, 3.14

Tuple

std::pair has largely been eclipsed by the more generic std::tuple
in <tuple>. It can hold any number of data members, not just two.
This is like the ValueTuple family of classes in C#: ValueTuple<T>,
ValueTuple<T1, T2>, ValueTuple<T1, T2, T3>, etc. There’s only one
class template in C++ since variadic templates are supported, so
truly any number of data members may be added to a std::tuple:

#include <tuple>

// Make a struct with an int and a float as non-static

data members

std::tuple<int, float> t{ 123, 3.14f };

// Get them, but only with std::get since there are no

names

DebugLog(std::get<0>(t), std::get<1>(t)); // 123, 3.14

// We can also use std::make_tuple to use type deduction

to avoid

// specifying the types ourselves

t = std::make_tuple(123, 3.14f);

DebugLog(std::get<0>(t), std::get<1>(t)); // 123, 3.14

// make_tuple is less necessary in C++17 with template

argument deduction

std::tuple t2{ 456, 2.2f };

DebugLog(std::get<0>(t2), std::get<1>(t2)); // 456, 2.2

// std::swap works with std::tuple

std::swap(t, t2);

DebugLog(std::get<0>(t), std::get<1>(t)); // 456, 2.2

DebugLog(std::get<0>(t2), std::get<1>(t2)); // 123, 3.14

std::tuple has some extended functionality beyond what’s provided
for std::pair:

#include <tuple>

std::tuple t{ 123, 3.14f, "hello" };

// Get the number of elements in the tuple at compile

time

constexpr std::size_t size =

std::tuple_size_v<decltype(t)>;

DebugLog(size); // 3

// Get the type of an element of the tuple

std::tuple_element_t<1, decltype(t)> second = std::get<1>

(t);

DebugLog(second); // 3.14

// Create a tuple of lvalue references to variables

int i = 456;

float f = 2.2f;

std::tuple tied = std::tie(i, f);

i = 100;

f = 200;

DebugLog(std::get<0>(tied), std::get<1>(tied)); // 100,

200

// Convert from std::pair to std::tuple

std::pair p{ 2, 4 };

std::tuple t2{ 0, 0 };

t2 = p;

DebugLog(std::get<0>(t2), std::get<1>(t2)); // 2, 4

// Concatenate tuples

std::tuple<

 // Types from t

 int, float, const char*,

 // Types from tied

 int, float,

 // Types from t2

 int, int

> cat = std::tuple_cat(t, tied, t2);

DebugLog(

 std::get<0>(cat),

 std::get<1>(cat),

 std::get<2>(cat),

 std::get<3>(cat),

 std::get<4>(cat),

 std::get<5>(cat),

 std::get<6>(cat)); // 123, 3.14, hello, 100, 200, 2,

4

struct IntVector

{

 int X;

 int Y;

};

// Instantiate a class by passing the data members of a

tuple to a

// constructor of that class

IntVector iv = std::make_from_tuple<IntVector>(t2);

DebugLog(iv.X, iv.Y); // 2, 4

// Make a function call, passing the data members of a

tuple as arguments

DebugLog(std::apply([](int a, int b) { return a + b; },

t2)); // 6

Unlike C#, there’s no way to name the data members of a C++
std::tuple. We simply refer to them by index similar to using the
default Item1, Item2, etc. names in C#.

Variant

The <variant> header provides std::variant, which is essentially a
generic tagged union. It holds one of many types and is as big as the
largest of them. This type is very useful to pass, return, or hold one
of many types. There’s no similar type in C#, but we can create our
own family of them.

#include <variant>

// Make a variant that holds either an int32_t or a

double

// Start off holding an int32_t

std::variant<int32_t, double> v{ 123 };

DebugLog(std::get<int32_t>(v)); // 123

DebugLog(v.index()); // 0

// Switch to holding a double

v = 3.14;

DebugLog(std::get<double>(v)); // 3.14

DebugLog(v.index()); // 1

// Trying to get a type that's not current throws an

exception

DebugLog(std::get<int>(v)); // throws

std::bad_variant_access

// Check the type before getting it

if (std::holds_alternative<int32_t>(v))

https://jacksondunstan.com/articles/5303

{

 DebugLog("int32_t", std::get<int32_t>(v)); // not

printed

}

else

{

 DebugLog("double", std::get<double>(v)); // double

3.14

}

// Get an int32_t pointer if that's the current type

// If it's not, get nullptr

if (int32_t* pVal = std::get_if<int32_t>(&v))

{

 DebugLog(*pVal); // not printed

}

else

{

 DebugLog("not an int"); // printed

}

// These helpers are common boilerplate to use lambdas

with std::visit

// They're usually stashed away in some "utilities"

header file

template<class... TFuncs> struct overloaded : TFuncs...

{

 using TFuncs::operator()...;

};

template<class... TFuncs> overloaded(TFuncs...) ->

overloaded<TFuncs...>;

// Call the appropriate lambda for the variant's current

type

std::visit(overloaded {

 [](double val) { DebugLog("double", val); }, //

double 3.14

 [](int32_t val) { DebugLog("int32_t", val); } // not

printed

 }, v);

// A class without a default constructor

struct IntWrapper

{

 int Val;

 IntWrapper(int val)

 : Val(val)

 {

 }

};

// Compiler error: first type needs to be default

constructible

std::variant<IntWrapper, float> v2;

// No compiler error: std::monostate is default

constructible

// It's just a placeholder to work around this issue

std::variant<std::monostate, IntWrapper, float> v2;

// We can get a monostate, but it has no members so

there's no reason to

std::monostate m = std::get<std::monostate>(v2);

Optional

Similar to std::variant holding one of many types, std::optional
holds either a value or the absence of a value. It’s similar to
Nullable<T>/T? in C# as well as Optional.

#include <optional>

// Create an optional with a value

std::optional<float> f{ 3.14f };

// Dereference it like a pointer to get its value

DebugLog(*f); // 3.14

// By default it has no value

std::optional<float> f2;

// Dereferencing without a value is undefined behavior

DebugLog(*f2); // Could be anything!

// Manually check for a value

if (f2.has_value())

{

 DebugLog(*f2); // not printed

}

else

{

 DebugLog("no value"); // gets printed

https://jacksondunstan.com/articles/5372

}

// Can also check by converting to bool

if (f2)

{

 DebugLog(*f2); // not printed

}

else

{

 DebugLog("no value"); // gets printed

}

// The value member function throws an exception if

there's no value

DebugLog(f2.value()); // Throws std::bad_optional_access

// Get the value or a default

DebugLog(f2.value_or(0)); // 0

// Assign a value

f2 = 2.2f;

DebugLog(*f2); // 2.2

// Clear a value

f2.reset();

DebugLog(f2.has_value()); // false

// The nullopt constant indicates "no option"

f = std::nullopt;

DebugLog(f.has_value()); // false

Any

Similar to C#’s base System.Object/object type, C++ has std::any
in the <any> header. This is a container for any type of object or,
similar to null, no object at all.

#include <any>

// Create an empty std::any

std::any a;

// Check whether it has a value or is empty

if (a.has_value())

{

 DebugLog("has value"); // not printed

}

else

{

 DebugLog("empty"); // gets printed

}

// Set its value

a = 3.14f;

// Check the type

DebugLog(a.type() == typeid(float)); // true

// Get the value

// Note: not a real cast. Just a function with "cast" in

the name.

DebugLog(std::any_cast<float>(a)); // 3.14

// Getting the wrong type throws an exception

try

{

 DebugLog(std::any_cast<int32_t>(a));

}

catch (const std::bad_any_cast& ex)

{

 DebugLog(ex.what()); // Maybe "Bad any_cast"

}

// Destroy the value and go back to being empty

a.reset();

DebugLog(a.has_value()); // false

// Another way to create a std::any

a = std::make_any<int32_t>(123);

DebugLog(std::any_cast<int32_t>(a)); // 123

Bit Set

C# has BitArray to represent an array of bits. The C++ equivalent is
std::bitset which is a class templated on the number of bits it
holds:

#include <bitset>

// Holds three bits that are all zero

std::bitset<3> zeroes;

// Indexing gives us bool values

DebugLog(zeroes[0], zeroes[1], zeroes[2]); // false,

false, false

// Get a bit, but throw an exception if out of bounds

DebugLog(zeroes.test(1)); // false

//DebugLog(zeroes.test(3)); // throws std::out_of_range

// Manually bounds-check against the number of bits

if (3 < zeroes.size())

{

 DebugLog(zeroes[3]); // not printed

}

else

{

 DebugLog("out of bounds"); // gets printed

}

// Convert the bits of an unsigned long to a bitset

std::bitset<3> bits{ 0b101ul };

DebugLog(bits[0], bits[1], bits[2]); // true, false, true

// Compare bitsets

DebugLog(zeroes == bits); // false

// Check all the bits against 1

DebugLog(bits.all()); // false

DebugLog(bits.any()); // true

DebugLog(bits.none()); // false

DebugLog(bits.count()); // 2

// Set a bit

bits.set(0, false);

DebugLog(bits[0], bits[1], bits[2]); // false, false,

true

// Set all bits to true or false

bits.set();

DebugLog(bits[0], bits[1], bits[2]); // true, true, true

bits.reset();

DebugLog(bits[0], bits[1], bits[2]); // false, false,

false

// Perform bit operations on the set

bits |= 0b010;

DebugLog(bits[0], bits[1], bits[2]); // false, true,

false

bits >>= 1;

DebugLog(bits[0], bits[1], bits[2]); // true, false,

false

// Get bits as an integer

unsigned long ul = bits.to_ulong();

DebugLog(ul); // 1

// Bits are represented in a compact manner

std::bitset<1024> kb;

DebugLog(sizeof(kb)); // 128

Functional

Finally for this chapter, <functional> contains function-related
utilities. Some of these are class templates that have an operator()
so they can be called like functions. These were more useful before
lambdas were introduced to the language, but still commonly seen
as a named shorthand alternative to them:

#include <functional>

// An object to perform +

std::plus<int32_t> add;

DebugLog(add(2, 3)); // 5

// An object to perform ==

std::equal_to<int32_t> equal;

DebugLog(equal(2, 2)); // true

// An object to perform ||

std::logical_and<int32_t> la;

DebugLog(la(1, 0)); // false

// An object to perform |

std::bit_and<int32_t> ba;

DebugLog(ba(0b110, 0b011)); // 2 (0b010)

// An object to perform the negation of another object

auto ne = std::not_fn(equal);

DebugLog(ne(2, 3)); // true

// Some class with a member function

struct Adder

{

 int32_t AddOne(int32_t val)

 {

 return val + 1;

 }

};

// An object to call a member function

auto addOne = std::mem_fn(&Adder::AddOne);

Adder adder;

DebugLog(addOne(adder, 2)); // 3

A std::function class template is provided to encapsulate any kind
of callable object including lambdas, free functions, and function
objects. This is similar to delegates like Action or Func in C#, except
that it represents only one function:

#include <functional>

// Create a std::function that calls a lambda

std::function<int32_t(int32_t, int32_t)> add{

 [](int32_t a, int32_t b) {return a + b; } };

DebugLog(add(2, 3)); // 5

// Create a std::function that calls a free function

int32_t Add(int32_t a, int32_t b)

{

 return a + b;

}

std::function<int32_t(int32_t, int32_t)> add2{Add};

DebugLog(add2(2, 3)); // 5

// Create a std::function that calls operator() on a

class object

struct Adder

{

 int32_t operator()(int32_t a, int32_t b)

 {

 return a + b;

 }

};

std::function<int32_t(int32_t, int32_t)> add3{ Adder{} };

DebugLog(add3(2, 3)); // 5

Similarly, std::bind also creates a callable object by “binding” one or
more values and placeholder parameters to it:

#include <functional>

// Create an object that calls a lambda

auto add = std::bind(

 // Lambda to call

 [](int32_t a, int32_t b) { return a + b; },

 // Placeholders for parameters

 std::placeholders::_1,

 std::placeholders::_2);

DebugLog(add(2, 3)); // 5

// Create an object that calls a free function

int32_t Add(int32_t a, int32_t b)

{

 return a + b;

}

auto add2 = std::bind(

 // Free function to call

 Add,

 // Placeholders for parameters

 std::placeholders::_1,

 std::placeholders::_2);

DebugLog(add2(2, 3)); // 5

// Create an object that calls a member function

struct Adder

{

 int32_t Add(int32_t a, int32_t b)

 {

 return a + b;

 }

};

Adder adder;

auto add3 = std::bind(

 // Member function to call

 &Adder::Add,

 // Object to call it on

 &adder,

 // Placeholders for parameters

 std::placeholders::_1,

 std::placeholders::_2);

DebugLog(add3(2, 3)); // 5

In C++20, std::bind_front is available as a simpler alternative. It
doesn’t support more complex options like out-of-order placeholders:

// Create an object that calls a lambda

auto add = std::bind_front(

 [](int32_t a, int32_t b) { return a + b; });

DebugLog(add(2, 3)); // 5

// Create an object that calls a free function

auto add2 = std::bind_front(Add);

DebugLog(add2(2, 3)); // 5

// Create an object that calls a member function

Adder adder;

auto add3 = std::bind_front(&Adder::Add, &adder);

DebugLog(add3(2, 3)); // 5

And finally, std::reference_wrapper stores a reference in a normal
class object:

#include <functional>

// An integer and a reference to it

int x = 123;

int& r = x;

// Use std::ref to get a reference to it

std::reference_wrapper<int> w = std::ref(r);

// Can copy the wrapper without changing the reference

std::reference_wrapper<int> w2 = w;

// Unwrap the references

DebugLog(w.get(), w2.get()); // 123, 123

// Modifying one modifies the other

int& r2 = w2.get();

r2 = 456;

DebugLog(w.get(), w2.get()); // 456, 456

// std::cref gets a constant reference

std::reference_wrapper<const int> cw = std::cref(x);

cw.get() = 1000; // Compiler error: cw.get() is "const

int&"

Conclusion

The C++ Standard Library provides a lot of utility functions and
types. Most of them are templates, which is why the Standard
Library is often called the Standard Template Library or STL.

We have a wide variety of error-handling utilities including platform-
independent error codes and an inheritance tree of standardized
exceptions akin to System.Exception in C#.

There are many general-purpose types available, too. std::optional
gives us the ability to indicate that a value may or may not be
present which is especially useful as a return value of functions that
may fail to have a usable result. std::variant implements any
tagged union for us and is a useful alternative to traditional
inheritance trees. std::any takes the place of System.Object in C#
for times where a value really could be any kind of type.

We’ve even got a lot of function-related tools like std::function to
abstract the specific kind of function, as C# delegates do. We have
many “callable” struct types as associated tools such as std::bind
and named types like std::plus.

As we continue through the Standard Library, we’ll keep seeing
utilities like std::exception crop up again and again.

41. System Integration Library' href

Limits

C# primitive type structs have const fields indicating their range:
int.MinValue and int.MaxValue. Likewise, the C++ Standard
Library’s <limits> header provides the std::numeric_limits class
template. At its core, this provides a type-safe version of the macros
in the C Standard Library’s <limits.h>/<climits> and
<stdint.h>/<cstdint>:

#include <limits>

DebugLog(std::numeric_limits<int32_t>::min()); //

-2147483648

DebugLog(std::numeric_limits<int32_t>::max()); //

2147483647

The min and max member functions are constexpr, so they can be
used in compile-time programming just like the equivalent C# const
fields.

There are a ton more functions and constants available in
numeric_limits. Here’s a selection of them:

#include <limits>

// Difference between 1.0 and the next representable

floating-point value

DebugLog(std::numeric_limits<float>::epsilon()); //

1.19209e-07

// Largest error in rounding a floating-point value

DebugLog(std::numeric_limits<float>::round_error()); //

0.5

// Floating-point constants

DebugLog(std::numeric_limits<float>::infinity()); // inf

DebugLog(std::numeric_limits<float>::quiet_NaN()); // nan

DebugLog(std::numeric_limits<float>::signaling_NaN()); //

nan

// Type info useful when writing templates

DebugLog(std::numeric_limits<float>::is_integer); //

false

DebugLog(std::numeric_limits<float>::is_exact); // false

DebugLog(std::numeric_limits<float>::is_modulo); // false

DebugLog(std::numeric_limits<float>::digits10); // 6

Numbers

The <numbers> header was introduced in C++20 to provide
mathematical constants in the std::numbers namespace. C# has a
few of these as const fields of Math, but the selection is limited and
only double values are provided. C++ provides a more robust set as
variable templates for each numeric type:

#include <numbers>

// Base 2 log of e

DebugLog(std::numbers::log2e_v<float>); // 1.4427

// Base 10 log of e

DebugLog(std::numbers::log10e_v<float>); // 0.434294

// Pi

DebugLog(std::numbers::pi_v<float>); // 3.14159

// 1 divided by pi

DebugLog(std::numbers::inv_pi_v<float>); // 0.31831

// 1 divided by the square root of pi

DebugLog(std::numbers::inv_sqrtpi_v<float>); // 0.56419

// Natural logarithm of 2

DebugLog(std::numbers::ln2_v<float>); // 0.693147

// Natural logarithm of 10

DebugLog(std::numbers::ln10_v<float>); // 2.30259

// Square root of 2

DebugLog(std::numbers::sqrt2_v<float>); // 1.41421

// Square root of 3

DebugLog(std::numbers::sqrt3_v<float>); // 1.73205

// 1 divided by the square root of 3

DebugLog(std::numbers::inv_sqrt3_v<float>); // 0.57735

// The Euler–Mascheroni constant
DebugLog(std::numbers::egamma_v<float>); // 0.577216

// The golden ratio

DebugLog(std::numbers::phi_v<float>); // 1.61803

For convenience, and as in C#, versions with simplified naming are
provided for double:

DebugLog(std::numbers::pi); // 3.14159

Numeric

We’ll cover the <numeric> header in two parts because it serves two
quite different purposes. In this chapter we’ll just look at three
common numeric algorithms it provides. These aren’t available in
C#:

#include <numeric>

// Greatest common divisor

DebugLog(std::gcd(12, 9)); // 3

// Least common multiple

DebugLog(std::lcm(12, 9)); // 36

// Half way between two numbers

DebugLog(std::midpoint(12.0, 9.0)); // 10.5

We’ll see the rest of the <numeric> header, which deals with
sequences of numbers, later in the book when we look at generic
algorithms.

Ratio

The <ratio> header provides a single class template: std::ratio. It
takes two integer template parameters representing a numerator and
a denominator. It has only two members, num and den, and both are
static. These are calculated at compile time by dividing the template
parameters by their greatest common divisor:

#include <ratio>

// Greatest common divisor of 1000 and 60 is 20

using MsPerFrame = std::ratio<1000, 60>;

// num = 1000 / 20 = 50

// den = 60 / 20 = 3

DebugLog(MsPerFrame::num, MsPerFrame::den); // 50, 3

A bunch of SI ratios are provided to represent powers of 10. Here
are a few of them:

#include <ratio>

DebugLog(std::nano::num, std::nano::den); // 1,

1000000000

DebugLog(std::milli::num, std::milli::den); // 1, 1000

DebugLog(std::kilo::num, std::kilo::den); // 1000, 1

DebugLog(std::mega::num, std::mega::den); // 1000000, 1

The durations we saw in the <chrono> header are actually
instantiations of std::ratio. For example:

Alias Ratio

std::chrono::seconds std::ratio<1, 1>

std::chrono::minutes std::ratio<60, 1>

std::chrono::hours std::ratio<3600, 1>

std::chrono::days std::ratio<86400, 1>

As C# lacks support for integer type parameters to its generic structs
and classes, there’s no equivalent to this.

Complex

Both languages have support for complex numbers. C# has the
System.Numerics.Complex struct and C++ has the std::complex
class template in <complex>. That class template has specializations
for at least float, double, and long double while the C# version
supports only double.

Here’s how to use std::complex:

#include <complex>

// Real part is 2. Imaginary part is 0.

std::complex<float> c1{ 2, 0 };

DebugLog(c1.real(), c1.imag()); // 2, 0

// Real part is 0. Imaginary part is 1.

std::complex<float> c2{ 0, 1 };

// Some operators are overloaded

DebugLog(c1 + c2); // 2, 1

DebugLog(c1 - c2); // 2, -1

DebugLog(c1 == c2); // false

DebugLog(c1 != c2); // true

DebugLog(-c1); // -2, -0

// Trigonometric functions

DebugLog(std::sin(c1)); // 0.909297, -0

DebugLog(std::cos(c1)); // -0.416147,-0

// Hyperbolic functions

DebugLog(std::sinh(c1)); // 3.62686, 0

DebugLog(std::cosh(c1)); // 3.7622, 0

// Exponential functions

DebugLog(std::pow(c1, c2)); // 0.769239, 0.638961

DebugLog(std::sqrt(c1)); // 1.41421, 0

// Misc functions

DebugLog(std::abs(c1)); // 2

DebugLog(std::norm(c1)); // 4

DebugLog(std::conj(c1)); // 2, -0

The above is just a sampling of the std::complex functionality. Like
the C# Complex type, quite a bit more is available. C++ also provides
user-defined literals in the std::literals::complex_literals
namespace to create complex numbers with 0 for the real part:

#include <complex>

using namespace std::literals::complex_literals;

std::complex<double> d = 2i;

DebugLog(d); // 0, 2

std::complex<float> f = 2if;

DebugLog(f); // 0, 2

std::complex<long double> ld = 2il;

DebugLog(ld); // 0, 2

Bit

The <bit> header, introduced in C++20, provides one enumeration
for dealing with endianness. This can be used like the
BitConverter.IsLittleEndian constant in C#:

#include <bit>

bool isLittleEndian = std::endian::native ==

std::endian::little;

DebugLog(isLittleEndian); // Maybe true

Mainly, this header has functions for performing bit manipulation on
integer types:

#include <bit>

// Check if only one bit is set, i.e. value is a power of

two

DebugLog(std::has_single_bit(2u)); // true

DebugLog(std::has_single_bit(3u)); // false

// Get the largest power of two greater than or equal to

a value

DebugLog(std::bit_ceil(100u)); // 128

// Rotate bits left, wrapping around

DebugLog(

 std::rotl(0b10100000000000000000000000000000, 2)

 == 0b10000000000000000000000000000010); //

true

// Count consecutive zero bits starting at the least-

significant

DebugLog(std::countr_zero(0b1000u)); // 3

// Count total one bits

DebugLog(std::popcount(0b10101010101010101010101010101010

)); // 16

// Reinterpret the bits of one type as another type

// Not a real cast, just a function with "cast" in the

name

uint32_t i = std::bit_cast<uint32_t>(3.14f);

DebugLog(i); // 1078523331

C# doesn’t provide any of these functions, so the closest equivalent
would be our own custom implementations of them.

Random

The final numeric header for this chapter is perhaps the most
interesting: <random>. Like the Random class in C#, this header
provides functionality for generating random numbers. It is, however,
far more advanced than its C# counterpart. For starters, multiple
“engines” are available as opposed to the single algorithm that
Random uses in C#. Here’s one of them:

#include <random>

// "Subtract with carry" algorithm for uint32_t values

with parameters

std::subtract_with_carry_engine<uint32_t, 24, 10, 24>

swc{};

// Generate random numbers

DebugLog(swc()); // Maybe 15039276

DebugLog(swc()); // Maybe 16323925

DebugLog(swc()); // Maybe 14283486

// Advance the engine state 100 steps without getting any

numbers

swc.discard(100);

// Reset the seed

swc.seed(123);

// Some "subtract with carry" engines with common types

and parameters

std::ranlux24_base r24; // 32-bit

std::ranlux48_base r48; // 64-bit

There are two more available:

#include <random>

// "Mersenne Twister" engines

std::mersenne_twister_engine<

 uint32_t, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13>

mt{}; // Custom

std::mt19937 mt32{}; // 32-bit with common parameters

std::mt19937_64 mt64{}; // 64-bit with common parameters

// "Linear congruential generator" engines

std::linear_congruential_engine<uint32_t, 1, 2, 3> lce{};

// Custom

std::minstd_rand0 msr0; // 32-bit "Minimal standard"

std::minstd_rand msr1; // New version of 32-bit "Minimal

standard"

There are also some “adapter” engines. These use an underlying
engine rather than generating their own random numbers:

#include <random>

// std::mt19937 is the underlying engine

// For each block of 32 random numbers, keep 2 of them

std::discard_block_engine<std::mt19937, 32, 2> db{};

uint32_t dbr = db();

// std::mt19937_64 is the underlying engine generating

64-bit numbers

// Convert them to 32-bit uint32_t values

std::independent_bits_engine<std::mt19937_64, 32,

uint32_t> ib{};

uint32_t ibr = ib();

// std::mt19937 is the underlying engine

// Keep a table of 16 random numbers and shuffle the

order returned

std::shuffle_order_engine<std::mt19937, 16> so{};

uint32_t sor = so();

// Alias of std::shuffle_order_engine<std::minstd_rand0,

256>

std::knuth_b kb{};

A std::random_device class is also available to provide non-
deterministic random numbers on systems that have hardware to
produce these. If no hardware is available, a platform-dependent
pseudo-random number generator is used instead:

#include <random>

https://en.wikipedia.org/wiki/Hardware_random_number_generator

std::random_device rd{};

DebugLog(rd()); // Maybe 448041643

DebugLog(rd()); // Maybe 1317373389

DebugLog(rd()); // Maybe 393151656

None of these are typically used directly. That’s because they return
numbers on their full range of values. We usually want to generate
random numbers on some particular range, so we use one of many
“distribution” classes. These classes can also shape the random
numbers to fit certain patterns:

#include <random>

// Random number generator engine

std::mt19937 engine{};

// Normal/Gaussian distribution of float values

// The mean is 3 and the standard deviation is 1.5

std::normal_distribution<float> distribution{ 3.0f, 1.5f

};

// Generate random numbers with the engine on the

distribution

DebugLog(distribution(engine)); // Maybe 3.37974

DebugLog(distribution(engine)); // Maybe 2.56017

DebugLog(distribution(engine)); // Maybe 3.12689

20 distribution classes are available to suit a wide variety of needs.
Here are a few of them:

#include <random>

// Uniform distribution of float values between -1 and 1

std::uniform_real_distribution<float> urd{ -1, 1 };

// Distribution of bool values returning true 75% of the

time

std::bernoulli_distribution bd{ 0.75f };

// Gamma distribution of float values with alpha and beta

of 1

std::gamma_distribution<float> gd{ 1.0f, 1.0f };

// Distribution of int32_t values that are 0, 1, 2, or 3

// With weights of 3.1, 2.2, 1.6, and 3.4, respectively

std::discrete_distribution<int32_t> dd{3.1f, 2.2f, 1.6f,

3.4f};

Conclusion

C++ has a full-featured numerics library. At its most basic there are
typed number constants in <limits> and <numbers> that expand on
C# functionality like int.MaxValue by adding more constants and
fleshing out the offerings so they’re available for every type.

The <numeric> and <bit> headers provide common functions
relating to numbers. We can compute the Greatest Common
Denominator or the number of ones in an integer. Basic
implementations may be easy to write, but the Standard Library
implementations are robust, well-tested, optimized, and
standardized.

In <complex> and <ratio> we find some class types to help us work
with pairs of numbers, be they real and imaginary or numerator and
denominator. In the case of std::complex, we get similar
functionality as the C# Complex type but templates enable support for
float and long double in addition to just double. With std::ratio
we have an easy way to represent ratios like kilo and seconds at
compile time and use them to generate safer, more efficient number
conversions.

Finally, there’s <random> and its suite of random number generation
tools. Not only do we get a single algorithm with a few basic tools, as
in C#’s Random class, but also a full suite of customizable engines,
distributions, and even access to hardware-based random number
generators.

42. Numbers Library

Limits

C# primitive type structs have const fields indicating their range:
int.MinValue and int.MaxValue. Likewise, the C++ Standard
Library’s <limits> header provides the std::numeric_limits class
template. At its core, this provides a type-safe version of the macros
in the C Standard Library’s <limits.h>/<climits> and
<stdint.h>/<cstdint>:

#include <limits>

DebugLog(std::numeric_limits<int32_t>::min()); //

-2147483648

DebugLog(std::numeric_limits<int32_t>::max()); //

2147483647

The min and max member functions are constexpr, so they can be
used in compile-time programming just like the equivalent C# const
fields.

There are a ton more functions and constants available in
numeric_limits. Here’s a selection of them:

#include <limits>

// Difference between 1.0 and the next representable

floating-point value

DebugLog(std::numeric_limits<float>::epsilon()); //

1.19209e-07

// Largest error in rounding a floating-point value

DebugLog(std::numeric_limits<float>::round_error()); //

0.5

// Floating-point constants

DebugLog(std::numeric_limits<float>::infinity()); // inf

DebugLog(std::numeric_limits<float>::quiet_NaN()); // nan

DebugLog(std::numeric_limits<float>::signaling_NaN()); //

nan

// Type info useful when writing templates

DebugLog(std::numeric_limits<float>::is_integer); //

false

DebugLog(std::numeric_limits<float>::is_exact); // false

DebugLog(std::numeric_limits<float>::is_modulo); // false

DebugLog(std::numeric_limits<float>::digits10); // 6

Numbers

The <numbers> header was introduced in C++20 to provide
mathematical constants in the std::numbers namespace. C# has a
few of these as const fields of Math, but the selection is limited and
only double values are provided. C++ provides a more robust set as
variable templates for each numeric type:

#include <numbers>

// Base 2 log of e

DebugLog(std::numbers::log2e_v<float>); // 1.4427

// Base 10 log of e

DebugLog(std::numbers::log10e_v<float>); // 0.434294

// Pi

DebugLog(std::numbers::pi_v<float>); // 3.14159

// 1 divided by pi

DebugLog(std::numbers::inv_pi_v<float>); // 0.31831

// 1 divided by the square root of pi

DebugLog(std::numbers::inv_sqrtpi_v<float>); // 0.56419

// Natural logarithm of 2

DebugLog(std::numbers::ln2_v<float>); // 0.693147

// Natural logarithm of 10

DebugLog(std::numbers::ln10_v<float>); // 2.30259

// Square root of 2

DebugLog(std::numbers::sqrt2_v<float>); // 1.41421

// Square root of 3

DebugLog(std::numbers::sqrt3_v<float>); // 1.73205

// 1 divided by the square root of 3

DebugLog(std::numbers::inv_sqrt3_v<float>); // 0.57735

// The Euler–Mascheroni constant
DebugLog(std::numbers::egamma_v<float>); // 0.577216

// The golden ratio

DebugLog(std::numbers::phi_v<float>); // 1.61803

For convenience, and as in C#, versions with simplified naming are
provided for double:

DebugLog(std::numbers::pi); // 3.14159

Numeric

We’ll cover the <numeric> header in two parts because it serves two
quite different purposes. In this chapter we’ll just look at three
common numeric algorithms it provides. These aren’t available in
C#:

#include <numeric>

// Greatest common divisor

DebugLog(std::gcd(12, 9)); // 3

// Least common multiple

DebugLog(std::lcm(12, 9)); // 36

// Half way between two numbers

DebugLog(std::midpoint(12.0, 9.0)); // 10.5

We’ll see the rest of the <numeric> header, which deals with
sequences of numbers, later in the book when we look at generic
algorithms.

Ratio

The <ratio> header provides a single class template: std::ratio. It
takes two integer template parameters representing a numerator and
a denominator. It has only two members, num and den, and both are
static. These are calculated at compile time by dividing the template
parameters by their greatest common divisor:

#include <ratio>

// Greatest common divisor of 1000 and 60 is 20

using MsPerFrame = std::ratio<1000, 60>;

// num = 1000 / 20 = 50

// den = 60 / 20 = 3

DebugLog(MsPerFrame::num, MsPerFrame::den); // 50, 3

A bunch of SI ratios are provided to represent powers of 10. Here
are a few of them:

#include <ratio>

DebugLog(std::nano::num, std::nano::den); // 1,

1000000000

DebugLog(std::milli::num, std::milli::den); // 1, 1000

DebugLog(std::kilo::num, std::kilo::den); // 1000, 1

DebugLog(std::mega::num, std::mega::den); // 1000000, 1

The durations we saw in the <chrono> header are actually
instantiations of std::ratio. For example:

Alias Ratio

std::chrono::seconds std::ratio<1, 1>

std::chrono::minutes std::ratio<60, 1>

std::chrono::hours std::ratio<3600, 1>

std::chrono::days std::ratio<86400, 1>

As C# lacks support for integer type parameters to its generic structs
and classes, there’s no equivalent to this.

Complex

Both languages have support for complex numbers. C# has the
System.Numerics.Complex struct and C++ has the std::complex
class template in <complex>. That class template has specializations
for at least float, double, and long double while the C# version
supports only double.

Here’s how to use std::complex:

#include <complex>

// Real part is 2. Imaginary part is 0.

std::complex<float> c1{ 2, 0 };

DebugLog(c1.real(), c1.imag()); // 2, 0

// Real part is 0. Imaginary part is 1.

std::complex<float> c2{ 0, 1 };

// Some operators are overloaded

DebugLog(c1 + c2); // 2, 1

DebugLog(c1 - c2); // 2, -1

DebugLog(c1 == c2); // false

DebugLog(c1 != c2); // true

DebugLog(-c1); // -2, -0

// Trigonometric functions

DebugLog(std::sin(c1)); // 0.909297, -0

DebugLog(std::cos(c1)); // -0.416147,-0

// Hyperbolic functions

DebugLog(std::sinh(c1)); // 3.62686, 0

DebugLog(std::cosh(c1)); // 3.7622, 0

// Exponential functions

DebugLog(std::pow(c1, c2)); // 0.769239, 0.638961

DebugLog(std::sqrt(c1)); // 1.41421, 0

// Misc functions

DebugLog(std::abs(c1)); // 2

DebugLog(std::norm(c1)); // 4

DebugLog(std::conj(c1)); // 2, -0

The above is just a sampling of the std::complex functionality. Like
the C# Complex type, quite a bit more is available. C++ also provides
user-defined literals in the std::literals::complex_literals
namespace to create complex numbers with 0 for the real part:

#include <complex>

using namespace std::literals::complex_literals;

std::complex<double> d = 2i;

DebugLog(d); // 0, 2

std::complex<float> f = 2if;

DebugLog(f); // 0, 2

std::complex<long double> ld = 2il;

DebugLog(ld); // 0, 2

Bit

The <bit> header, introduced in C++20, provides one enumeration
for dealing with endianness. This can be used like the
BitConverter.IsLittleEndian constant in C#:

#include <bit>

bool isLittleEndian = std::endian::native ==

std::endian::little;

DebugLog(isLittleEndian); // Maybe true

Mainly, this header has functions for performing bit manipulation on
integer types:

#include <bit>

// Check if only one bit is set, i.e. value is a power of

two

DebugLog(std::has_single_bit(2u)); // true

DebugLog(std::has_single_bit(3u)); // false

// Get the largest power of two greater than or equal to

a value

DebugLog(std::bit_ceil(100u)); // 128

// Rotate bits left, wrapping around

DebugLog(

 std::rotl(0b10100000000000000000000000000000, 2)

 == 0b10000000000000000000000000000010); //

true

// Count consecutive zero bits starting at the least-

significant

DebugLog(std::countr_zero(0b1000u)); // 3

// Count total one bits

DebugLog(std::popcount(0b10101010101010101010101010101010

)); // 16

// Reinterpret the bits of one type as another type

// Not a real cast, just a function with "cast" in the

name

uint32_t i = std::bit_cast<uint32_t>(3.14f);

DebugLog(i); // 1078523331

C# doesn’t provide any of these functions, so the closest equivalent
would be our own custom implementations of them.

Random

The final numeric header for this chapter is perhaps the most
interesting: <random>. Like the Random class in C#, this header
provides functionality for generating random numbers. It is, however,
far more advanced than its C# counterpart. For starters, multiple
“engines” are available as opposed to the single algorithm that
Random uses in C#. Here’s one of them:

#include <random>

// "Subtract with carry" algorithm for uint32_t values

with parameters

std::subtract_with_carry_engine<uint32_t, 24, 10, 24>

swc{};

// Generate random numbers

DebugLog(swc()); // Maybe 15039276

DebugLog(swc()); // Maybe 16323925

DebugLog(swc()); // Maybe 14283486

// Advance the engine state 100 steps without getting any

numbers

swc.discard(100);

// Reset the seed

swc.seed(123);

// Some "subtract with carry" engines with common types

and parameters

std::ranlux24_base r24; // 32-bit

std::ranlux48_base r48; // 64-bit

There are two more available:

#include <random>

// "Mersenne Twister" engines

std::mersenne_twister_engine<

 uint32_t, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13>

mt{}; // Custom

std::mt19937 mt32{}; // 32-bit with common parameters

std::mt19937_64 mt64{}; // 64-bit with common parameters

// "Linear congruential generator" engines

std::linear_congruential_engine<uint32_t, 1, 2, 3> lce{};

// Custom

std::minstd_rand0 msr0; // 32-bit "Minimal standard"

std::minstd_rand msr1; // New version of 32-bit "Minimal

standard"

There are also some “adapter” engines. These use an underlying
engine rather than generating their own random numbers:

#include <random>

// std::mt19937 is the underlying engine

// For each block of 32 random numbers, keep 2 of them

std::discard_block_engine<std::mt19937, 32, 2> db{};

uint32_t dbr = db();

// std::mt19937_64 is the underlying engine generating

64-bit numbers

// Convert them to 32-bit uint32_t values

std::independent_bits_engine<std::mt19937_64, 32,

uint32_t> ib{};

uint32_t ibr = ib();

// std::mt19937 is the underlying engine

// Keep a table of 16 random numbers and shuffle the

order returned

std::shuffle_order_engine<std::mt19937, 16> so{};

uint32_t sor = so();

// Alias of std::shuffle_order_engine<std::minstd_rand0,

256>

std::knuth_b kb{};

A std::random_device class is also available to provide non-
deterministic random numbers on systems that have hardware to
produce these. If no hardware is available, a platform-dependent
pseudo-random number generator is used instead:

#include <random>

https://en.wikipedia.org/wiki/Hardware_random_number_generator

std::random_device rd{};

DebugLog(rd()); // Maybe 448041643

DebugLog(rd()); // Maybe 1317373389

DebugLog(rd()); // Maybe 393151656

None of these are typically used directly. That’s because they return
numbers on their full range of values. We usually want to generate
random numbers on some particular range, so we use one of many
“distribution” classes. These classes can also shape the random
numbers to fit certain patterns:

#include <random>

// Random number generator engine

std::mt19937 engine{};

// Normal/Gaussian distribution of float values

// The mean is 3 and the standard deviation is 1.5

std::normal_distribution<float> distribution{ 3.0f, 1.5f

};

// Generate random numbers with the engine on the

distribution

DebugLog(distribution(engine)); // Maybe 3.37974

DebugLog(distribution(engine)); // Maybe 2.56017

DebugLog(distribution(engine)); // Maybe 3.12689

20 distribution classes are available to suit a wide variety of needs.
Here are a few of them:

#include <random>

// Uniform distribution of float values between -1 and 1

std::uniform_real_distribution<float> urd{ -1, 1 };

// Distribution of bool values returning true 75% of the

time

std::bernoulli_distribution bd{ 0.75f };

// Gamma distribution of float values with alpha and beta

of 1

std::gamma_distribution<float> gd{ 1.0f, 1.0f };

// Distribution of int32_t values that are 0, 1, 2, or 3

// With weights of 3.1, 2.2, 1.6, and 3.4, respectively

std::discrete_distribution<int32_t> dd{3.1f, 2.2f, 1.6f,

3.4f};

Conclusion

C++ has a full-featured numerics library. At its most basic there are
typed number constants in <limits> and <numbers> that expand on
C# functionality like int.MaxValue by adding more constants and
fleshing out the offerings so they’re available for every type.

The <numeric> and <bit> headers provide common functions
relating to numbers. We can compute the Greatest Common
Denominator or the number of ones in an integer. Basic
implementations may be easy to write, but the Standard Library
implementations are robust, well-tested, optimized, and
standardized.

In <complex> and <ratio> we find some class types to help us work
with pairs of numbers, be they real and imaginary or numerator and
denominator. In the case of std::complex, we get similar
functionality as the C# Complex type but templates enable support for
float and long double in addition to just double. With std::ratio
we have an easy way to represent ratios like kilo and seconds at
compile time and use them to generate safer, more efficient number
conversions.

Finally, there’s <random> and its suite of random number generation
tools. Not only do we get a single algorithm with a few basic tools, as
in C#’s Random class, but also a full suite of customizable engines,
distributions, and even access to hardware-based random number
generators.

43. Threading Library

Thread

Like the C# Thread class in System.Threading, C++ has std::thread
in the <thread> header. It’s the most basic way to create another
thread:

#include <thread>

#include <chrono>

void PrintLoop(const char* threadName)

{

 for (int i = 0; i < 10; ++i)

 {

 DebugLog(threadName, i);

 // this_thread provides functions that operate on

the current thread

 // sleep_for takes a std::chrono::duration

std::this_thread::sleep_for(std::chrono::milliseconds{100

});

 }

}

void MyThread()

{

 PrintLoop("MyThread");

}

// Create a thread and immediately start executing

MyThread in it

std::thread t{MyThread};

// This happens on the main thread

PrintLoop("Main Thread");

// Block until the thread terminates

t.join();

This prints something like this, depending on OS thread scheduling:

Main Thread, 0

MyThread, 0

MyThread, 1

Main Thread, 1

Main Thread, 2

MyThread, 2

MyThread, 3

Main Thread, 3

Main Thread, 4

MyThread, 4

MyThread, 5

Main Thread, 5

MyThread, 6

Main Thread, 6

MyThread, 7

Main Thread, 7

Main Thread, 8

MyThread, 8

Main Thread, 9

MyThread, 9

std::this_thread has a few other functions:

#include <thread>

// Sleep until a specific time

std::this_thread::sleep_until(std::chrono::system_clock::

now() + 1500ms);

// Tell the OS to schedule other threads

std::this_thread::yield();

// Get the current thread's ID

// Has overloaded comparison operators and works with

std::hash

std::thread::id i = std::this_thread::get_id();

std::thread t{

 [&] {

 DebugLog(i == std::this_thread::get_id()); //

false

 }

};

t.join();

std::thread itself has just a little more functionality. For starters, we
can pass parameters to threads:

#include <thread>

void Thread(int param)

{

 DebugLog(param); // 123 then 456 or visa versa

}

std::thread t1{ Thread, 123 };

std::thread t2{ Thread, 456 };

t1.join();

t2.join();

We can get some information about the thread, including its
std::thread::id:

#include <thread>

std::thread t{ [] {} };

// Get the ID from outside the thread

std::thread::id id = t.get_id();

// Get an platform-dependent handle to the thread

std::thread::native_handle_type handle =

t.native_handle();

// Check how many threads the CPU can run at once

// Depends on number of processors, cores, Hyper-

threading, etc.

unsigned int hc = std::thread::hardware_concurrency();

DebugLog(hc); // Maybe 8

// Check if the thread is active, i.e. we can join() it

DebugLog(t.joinable()); // true

t.join();

DebugLog(t.joinable()); // false

The last function is detach, which releases the OS thread from the
std::thread:

#include <thread>

#include <chrono>

std::thread t{ [] {

 DebugLog("thread start");

std::this_thread::sleep_for(std::chrono::milliseconds{500

});

 DebugLog("thread done");

} };

// Release the OS thread

t.detach();

DebugLog(t.joinable()); // false

DebugLog("main thread done");

// Can't join() the thread anymore, so sleep longer than

it runs

std::this_thread::sleep_for(std::chrono::milliseconds{

1000 });

This might print:

false

main thread done

thread start

thread done

The reason this is necessary is that the std::thread destructor
throws an exception if the thread is joinable. Calling detach makes it
non-joinable:

#include <thread>

#include <chrono>

void Foo()

{

 std::thread t{ [] {

std::this_thread::sleep_for(std::chrono::milliseconds{500

});

 } };

} // destructor throws

Next in <thread>, which debuted in C++20, is std::jthread. This is
like std::thread but with support for cancelation and automatic
joining. The std::jthread destructor calls join for us if the thread is
joinable. As C# lacks destructors, there’s no equivalent to this:

#include <thread>

#include <chrono>

void Foo()

{

 std::jthread t{ [] {

std::this_thread::sleep_for(std::chrono::milliseconds{500

});

 } };

} // destructor calls join()

To support cancelation, the thread function can take a
std::stop_token defined in <stop_token> used to check if another
thread has requested that the thread stop executing. Using this
“stop” functionality allows us to avoid some tricky inter-thread
communication. Unfortunately, there’s no analog to this in C#:

#include <thread>

#include <chrono>

void Foo()

{

 // Thread function takes a stop_token

 std::jthread t{ [] (std::stop_token st) {

 // Check if a stop is requested

 while (!st.stop_requested())

 {

std::this_thread::sleep_for(std::chrono::milliseconds{100

});

 DebugLog("Thread still running");

 }

 DebugLog("Stop requested");

std::this_thread::sleep_for(std::chrono::milliseconds{

500 });

 } };

 std::this_thread::sleep_for(std::chrono::seconds{ 1

});

 // Request that the thread stop executing

 // This does not block like join() would

 t.request_stop();

 DebugLog("After requesting stop");

} // jthread destructor calls join(). About 500

milliseconds passes here...

Stop Token

Besides defining std::stop_token, the <stop_token> header has a
couple other features related to std::jthread. First, there is
std::stop_source which issues std::stop_token objects:

#include <stop_token>

// Create a source of tokens

std::stop_source source{};

// Issue tokens from the source

std::stop_token t1 = source.get_token();

std::stop_token t2 = source.get_token();

// No stop is initially requested

DebugLog(t1.stop_requested(), t2.stop_requested()); //

false, false

// Request a stop on all tokens issued by the source

source.request_stop();

DebugLog(t1.stop_requested(), t2.stop_requested()); //

true, true

A std::stop_callback allows for a function to be called when a stop
is requested:

#include <stop_token>

std::stop_source source{};

std::stop_token t = source.get_token();

// Call a lambda when a token's source is stopped

std::stop_callback sc(

 t,

 [] { DebugLog("stop requested"); });

source.request_stop(); // stop requested

The callback is called on the thread that requests the stop:

#include <thread>

#include <stop_token>

#include <chrono>

// Thread that sleeps for 1 second

std::jthread t1{

 []

 {

std::this_thread::sleep_for(std::chrono::milliseconds{100

0});

 }

};

std::stop_source source1 = t1.get_stop_source();

std::stop_token token1 = t1.get_stop_token();

// Thread that sleeps for 0.5 seconds then stops thread

1's source

std::jthread t2{

 [](std::stop_source ss)

 {

std::this_thread::sleep_for(std::chrono::milliseconds{500

});

 // Calls the below callback on this thread

 ss.request_stop();

 },

 source1

};

std::thread::id id2 = t2.get_id();

// Register a callback for when thread 1's token is

stopped

std::stop_callback sc{

 token1,

 [&]

 {

 // Print which thread the callback was called on

 DebugLog(id2 == std::this_thread::get_id()); //

true

 }

};

// Wait 2 seconds for the threads to do their work

std::this_thread::sleep_for(std::chrono::milliseconds{

2000 });

Mutex

Proper synchronization between threads is essential to prevent data
corruption and logic errors. To this end, C++ provides numerous
facilities starting with std::mutex, the equivalent of C#’s Mutex class.

#include <thread>

#include <mutex>

// An array to fill up with integers

constexpr int size = 10;

int integers[size];

int index = 0;

// A mutex to control access to the array

std::mutex m{};

auto writer = [&]

{

 while (true)

 {

 // Lock the mutex before accessing shared state:

index and integers

 m.lock();

 // Access shared state by reading index

 if (index >= size)

 {

 // Unlock the mutex when done with the shared

state

 m.unlock();

 break;

 }

 // Access shared state by reading and writing

index and writing integers

 integers[index] = index;

 index++;

 // Unlock the mutex when done with the shared

state

 m.unlock();

 }

};

std::thread t1{writer};

std::thread t2{writer};

t1.join();

t2.join();

for (int i = 0; i < size; ++i)

{

 DebugLog(integers[i]); // 0, 1, 2, 3, 4, 5, 6, 7, 8,

9

}

More mutex classes are available besides the basic std::mutex. The
std::timed_mutex class allows us to attempt to unlock a mutex for a
certain amount of time:

#include <mutex>

std::timed_mutex m{};

// Try to get a lock for up to 1 millisecond then give up

bool didLock = m.try_lock_for(std::chrono::milliseconds{

1 });

Because std::mutex and std::timed_mutex can’t be locked when
already locked by the same thread, there’s also
std::recursive_mutex that allows for this:

#include <mutex>

std::recursive_mutex m{};

// First lock

m.lock();

// Second lock: OK with recursive_mutex but not regular

mutex

m.lock();

// Unlock second lock

m.unlock();

// Unlock first lock

m.unlock();

The std::recursive_timed_mutex class combines
std::recursive_mutex and std::timed_mutex to provide both their
feature sets.

When multiple mutexes need to be locked, a std::lock function
avoids deadlocks due to the ABA problem:

std::mutex m1{};

std::mutex m2{};

// Lock both mutexes

std::lock(m1, m2);

m1.unlock();

m2.unlock();

When we need to call a function exactly once from multiple threads,
we can use std::call_once and its helper class std::once_flag:

#include <thread>

#include <mutex>

// Keeps track of whether the function has been called

std::once_flag of{};

https://en.wikipedia.org/wiki/ABA_problem

// Function to call once

auto print = [](int x) { DebugLog("called once", x); };

// Two threads racing to call the function

auto threadFunc = [&](int x) { std::call_once(of, print,

x); };

std::thread t1{ threadFunc, 123 };

std::thread t2{ threadFunc, 456 };

t1.join();

t2.join();

In C#, we rarely use Mutex directly. Instead, we usually prefer to use
a lock statement which takes care of unlocking the mutex even
when an exception is thrown. The same is true in C++, except that
we use a lock class and its destructor unlocks the mutex even when
an exception is thrown:

#include <mutex>

void Foo()

{

 // Mutex to lock

 std::mutex m{};

 // Create a lock object for the mutex

 // Constructor locks the mutex

 std::lock_guard g{ m };

} // lock_guard's destructor unlocks the mutex

std::unique_lock is the same as std::lock_guard but it supports
“moving” the lock object and not “copying” it. Regardless of the lock
class chosen, we can use std::lock to lock multiple if we first defer
taking the lock:

#include <mutex>

void Foo()

{

 std::mutex m1{};

 std::mutex m2{};

 // Make the locks, but don't lock the mutexes yet

 std::unique_lock g1{ m1, std::defer_lock };

 std::unique_lock g2{ m2, std::defer_lock };

 // Lock them both, avoiding deadlocks

 std::lock(g1, g2);

} // unique_lock's destructor unlocks both mutexes

In C++17, a more convenient std::scoped_lock was added to deal
with locking multiple mutexes:

#include <mutex>

void Foo()

{

 std::mutex m1{};

 std::mutex m2{};

 // Lock both mutexes

 std::scoped_lock g{ m1, m2 };

} // scoped_lock's destructor unlocks both mutexes

Shared Mutex

C++17 adds another mutex type, std::shared_mutex, in the
<shared_mutex> header. There are two ways to lock this mutex:
“exclusive” and “shared.” An “exclusive” lock can only be taken by
one thread at a time and prevents any threads from taking a “shared”
lock. A “shared” lock allows other threads to take a “shared” lock but
not an “exclusive” lock. Regardless of the kind of lock, any given
thread can only lock once.

To take these two kinds of locks, we use the std::unique_lock class
we’ve already seen in <mutex> and the std::shared_lock or
std::shared_timed_lock classes provided by <shared_mutex>:

#include <mutex>

#include <shared_mutex>

class SharedInt

{

 int Value = 0;

 // Mutex that protects the value

 mutable std::shared_mutex Mutex;

public:

 int GetValue() const

 {

 // Multiple threads can read at once, so use take

a "shared" lock

 std::shared_lock lock{ Mutex };

 return Value;

 }

 void SetValue(int value)

 {

 // Only one thread can write at once, so take an

"exclusive" lock

 std::unique_lock lock{ Mutex };

 Value = value;

 }

};

Semaphore

C++20 introduces more synchronization mechanisms than just
mutexes, starting with std::counting_semaphore in <semaphore>.
This is the analog of C#’s Semaphore class and it allows more than
one access at a time:

#include <semaphore>

// Allow up to 3 accesses with the counter starting at 3

std::counting_semaphore<3> cs{ 3 };

// Block while the counter is 0 then decrement it by 1

cs.acquire();

// Counter is now 2

cs.acquire();

// Counter is now 1

cs.acquire();

// Counter is now 0

// Try to acquire, but fail because the counter is at 0

bool didAcquire = cs.try_acquire();

DebugLog(didAcquire); // false

// Increment the counter

cs.release();

// Counter is now 1

DebugLog(cs.try_acquire()); // true

// Counter is now 0

A std::binary_semaphore is provided as an alias of
std::counting_semaphore<1>.

Barrier

The next synchronization mechanism provided by C++20 is
std::barrier in the <barrier> header. It’s equivalent to the Barrier
class in C#. Like a semaphore, a barrier has a count of threads. In
contrast, these indicate threads that have “arrived” at the barrier and
should block until the barrier is “completed”:

#include <chrono>

#include <thread>

#include <barrier>

void Foo()

{

 // Define a function to call when the barrier is

completed

 auto complete = []() noexcept {};

 // Allow up to three threads to block until the

barrier is completed

 std::barrier b{ 3, complete };

 auto threadFunc = [&](int id)

 {

 // Do something before arriving at the barrier

 DebugLog("before arrival", id);

 // Arrive at the barrier and get a token

 auto arrivalToken = b.arrive();

 // Do something after arriving at the barrier

 DebugLog("after arrival", id);

 // Wait for the barrier to complete

 b.wait(std::move(arrivalToken));

 // Do something after the barrier completes

 DebugLog("after waiting", id);

 };

 std::jthread t1{ threadFunc, 1 };

 std::jthread t2{ threadFunc, 2 };

 std::jthread t3{ threadFunc, 3 };

 std::this_thread::sleep_for(std::chrono::seconds{ 3

});

 // Complete the barrier

 complete();

}

This prints:

before arrival, 3

before arrival, 1

before arrival, 2

after arrival, 3

after arrival, 11

after arrival, 2

Then three seconds later…

after waiting, 2

after waiting, 1

after waiting, 3

Latch

The std::latch class in C++20’s <latch> header provides a single-
use version of std::barrier. This class is flexible in different ways
than std::barrier. One is that any given thread can decrement the
counter more than once. Another is that decrementing can be by
more than one step. There’s no completion function though. Instead,
threads blocking on the latch are resumed when the counter hits
zero.

#include <chrono>

#include <thread>

#include <latch>

// Allow up to three threads to block

std::latch latch{ 3 };

auto threadFunc = [&](int id)

{

 // Do something before

 DebugLog("before", id);

 // Decrement the counter by one

 latch.count_down();

 // Do something after

 DebugLog("after", id);

 // Wait for the counter to hit zero

 latch.wait();

 // Do something after the counter hits zero

 DebugLog("after zero", id);

};

std::jthread t1{ threadFunc, 1 };

std::this_thread::sleep_for(std::chrono::seconds{ 2 });

std::jthread t2{ threadFunc, 2 };

std::this_thread::sleep_for(std::chrono::seconds{ 2 });

std::jthread t3{ threadFunc, 3 };

This prints:

before, 1

after, 1

Then two seconds later…

before, 2

after, 2

And two more seconds later, thread 3 reduces the latch to zero…

before, 3

after, 3

after zero, 3

after zero, 1

after zero, 2

There’s no direct equivalent in C#, but Barrier and CountdownEvent
are rather close.

Condition Variable

Another thread synchronization option is std::condition_variable
in <condition_variable>. This is similar to the ManualResetEvent
and AutoResetEvent classes in C# in that it’s used by a thread that
needs to wait for some condition to be satisfied before proceeding:

#include <thread>

#include <mutex>

#include <condition_variable>

// Mutex and condition variable to coordinate the threads

std::mutex m;

std::condition_variable cv;

// Flags to indicate that work is ready and the result of

work is ready

bool workReady;

bool resultReady;

// The result of work

int result;

// Thread that does the work

// First waits for the condition to be set indicating

that work is ready

void WorkThread()

{

 // Lock the mutex

 DebugLog("Work thread locking mutex");

 std::unique_lock<std::mutex> lock(m);

 // Wait for the workReady flag to be set to true

 DebugLog("Work thread waiting for workReady flag");

 cv.wait(lock, [] { return workReady; });

 // Now we have the mutex locked

 // Do "work" by setting the shared value to 123

 DebugLog("Work thread doing work");

 result = 123;

 // Set the resultReady flag to tell the other thread

our work is done

 DebugLog("Work thread setting resultReady flag");

 resultReady = true;

 // Unlock the mutex

 DebugLog("Work thread unlocking mutex");

 lock.unlock();

 // Notify the condition variable

 DebugLog("Work thread notifying CV");

 cv.notify_one();

 DebugLog("Work thread done");

}

// Initially nothing is ready

result = 0;

workReady = false;

resultReady = false;

// Start the thread

// It'll start waiting for the condition variable

std::thread worker{ WorkThread };

{

 // Lock the mutex

 DebugLog("Main thread locking mutex");

 std::lock_guard lg(m);

 // Set the flag to indicate that work is ready

 DebugLog("Main thread setting workReady flag");

 workReady = true;

} // Third, unlock the mutex (via lock_guard destructor)

// Fourth, notify the condition variable

DebugLog("Main thread notifying CV");

cv.notify_one();

{

 // Lock the mutex

 DebugLog("Main thread locking mutex to get result");

 std::unique_lock ul(m);

 // Wait for the resultReady flag to be set to true

 DebugLog("Main thread waiting for resultReady flag");

 cv.wait(ul, [] { return resultReady; });

}

// Use the result

DebugLog("Main thread got result", result);

worker.join();

This prints:

Main thread locking mutex

Main thread setting workReady flag

Main thread notifying CV

Main thread locking mutex to get result

Main thread waiting for resultReady flag

Work thread locking mutex

Work thread waiting for workReady flag

Work thread doing work

Work thread setting resultReady flag

Work thread unlocking mutex

Work thread notifying CV

Work thread done

Main thread got result, 123

std::condition_variable requires us to use exactly std::mutex as
our mutex type. If we’d rather use another type, we can replace it
with std::condition_variable_any.

Atomic

The final synchronization mechanism we’ll look at in this chapter is
std::atomic in the <atomic> header. A std::atomic<T> class acts
like the T type but all operators are implemented atomically. This can
be somewhat approximated in C# with the static functions of the
Interlocked class, but there’s no generic type that behaves quite
like std::atomic.

#include <atomic>

#include <thread>

// Make an atomic int starting at zero

std::atomic<int> val{ 0 };

// Run three threads that each use the atomic int

auto threadFunc = [&]

{

 for (int i = 0; i < 1000; ++i)

 {

 // Call the overloaded ++ operator

 // Atomically adds one

 val++;

 }

};

std::jthread t1{ threadFunc };

std::jthread t2{ threadFunc };

std::jthread t3{ threadFunc };

t1.join();

t2.join();

t3.join();

DebugLog(val); // 3000

There are a lot of type aliases for specializations of the std::atomic
class template. Here are a few:

std::atomic_bool ab; // atomic<bool>

std::atomic_int ai; // atomic<int>

std::atomic_int32_t ai32; // atomic<int32_t>

std::atomic_int64_t ai64; // atomic<int64_t>

std::atomic_size_t as; // atomic<size_t>

// C++20: the most efficient lock-free types

std::atomic_signed_lock_free aslf; // signed

std::atomic_unsigned_lock_free aulf; // unsigned

Any trivially-copyable, copy-constructible, and copy-assignable type
can be used but hardware support for atomic operations may not be
available and locks may be required to ensure atomic access:

struct Player

{

 const char* Name;

 int32_t Score;

 int32_t Health;

};

std::atomic<Player> ap;

We can test that with is_lock_free:

std::atomic<int> val{ 0 };

DebugLog(val.is_lock_free()); // true

DebugLog(ap.is_lock_free()); // false

Besides overloaded operators like ++, there are a few member
functions to take more control over the atomic operations. The store
and load functions allow customization of how memory is affected so
we can control memory reordering:

#include <atomic>

std::atomic<int> val{ 0 };

// Write and customize how memory ordering is affected

val.store(1, std::memory_order_relaxed); // No

synchronization

val.store(2, std::memory_order_release); // No writes

reordered after this

val.store(3, std::memory_order_seq_cst); // Sequentially

consistent

// Read and customize how memory ordering is affected

int i;

i = val.load(std::memory_order_relaxed); // No

synchronization

i = val.load(std::memory_order_consume); // No writes

reordered before this

i = val.load(std::memory_order_acquire); // No reads or

writes before this

i = val.load(std::memory_order_seq_cst); // Sequentially

consistent

The exchange, compare_exchange_weak, and
compare_exchange_strong functions are very similar to functions in
C#’s Interlocked class:

#include <atomic>

std::atomic<int> v{ 123 };

// Set a new value and return the old value

int old = v.exchange(456);

DebugLog(old); // 123

// Set a new value if the current value is an expected

value

int expected = 456;

bool exchanged = v.compare_exchange_strong(expected,

789);

DebugLog(exchanged); // true

DebugLog(v); // 789

exchanged = v.compare_exchange_strong(expected, 1000);

DebugLog(exchanged); // false

DebugLog(v); // 789

// A "weak" version that might set even if the expected

value differs

exchanged = v.compare_exchange_strong(expected, 1000);

Future

Lastly, we have <future> with its future and async functionality. The
async function works conceptually similarly to Task in C# in that the
platform takes care of running a function, presumably on another
thread in a thread pool. A future is returned as a placeholder for the
eventual return value of that function:

#include <chrono>

#include <thread>

#include <future>

DebugLog("Calling async");

std::future<int> f {

 std::async(

 [] {

std::this_thread::sleep_for(std::chrono::seconds{2});

 return 123;

 }

)

};

DebugLog("Waiting");

f.wait();

DebugLog("Getting return value");

int retVal = f.get();

DebugLog("Got return value", retVal);

This prints:

Calling async

Waiting

Then two seconds later…

Getting return value

Got return value, 123

The std::launch enumeration provides options for how to execute
the function. By default, it’s run asynchronously as though we
passed std::launch::async. We can instead use
std::launch::deferred to instead run the function on the first thread
that calls get on the future:

#include <chrono>

#include <thread>

#include <future>

DebugLog("Calling async");

std::future<int> f{

 std::async(std::launch::deferred, [] {

std::this_thread::sleep_for(std::chrono::seconds{2});

 return 123; }) };

DebugLog("Doing something else");

std::this_thread::sleep_for(std::chrono::seconds{ 5 });

DebugLog("Getting return value");

int retVal = f.get();

DebugLog("Got return value", retVal);

This prints:

Calling async

Doing something else

Then five seconds later calling get runs the function…

Getting return value

Then two more seconds later the function finishes…

Got return value, 123

std::promise is another way to create a std::future besides
std::async. It can also hold an exception in the case that no value
can be produced. We can use std::promise with a wide variety of
asynchronous programming techniques. For example, it easily
combines with a simple std::jthread:

#include <chrono>

#include <thread>

#include <future>

// Make a promise to produce an int

std::promise<int> p{};

// Get a future for that int

std::future<int> f{ p.get_future() };

// Produce the value in another thread

std::jthread{

 [&]

 {

std::this_thread::sleep_for(std::chrono::seconds{2});

 p.set_value(123);

 }

};

// Block until the value is ready

DebugLog("Getting return value");

int retVal = f.get();

DebugLog(retVal);

This prints:

Getting return value

Then two seconds later…

123

The last class to look at in <future> is std::packaged_task. This is
an adapter that wraps functions in a class with an overloaded
function call operator like is done for us by the compiler with
lambdas. We can then get a std::future that’s ready when the
std::packaged_task is called. Like std::promise, we can use
std::packaged_task with plain threads or other asynchronous
programming paradigms besides std::async:

#include <chrono>

#include <thread>

#include <future>

int DoWork()

{

 std::this_thread::sleep_for(std::chrono::seconds{ 2

});

 return 123;

}

// Wrap DoWork in a class object

std::packaged_task pt{ DoWork };

// Get a future for when the packaged task is executed

std::future<int> f{ pt.get_future() };

// Call the packaged task on another thread

std::jthread t{ [&] { pt(); } };

// Block (for about 2 seconds) until DoWork returns

DebugLog("Getting return value");

int retVal = f.get();

DebugLog(retVal);

This prints:

Getting return value

Then two seconds later…

123

Conclusion

The C++ Standard Library provides us with quite a few multi-
threading tools. At the most basic, we have thread and jthread to
create our own threads. Once we’ve created these, we have a huge
variety of synchronization mechanisms: mutexes, latches, barriers,
semaphores, condition variables, and atomics. The <future> header
provides future, promise, packaged_task to wrap up work that’ll be
done asynchronously and either complete or throw an exception in
the future. These generic tools allow us to avoid implementing
extremely complex and error-prone thread synchronization strategies
ourselves.

The Standard Library even provides async as a high-level
mechanism for letting the platform take care of scheduling threads in
a manner similar to C#’s Task. A future version of the Standard
Library will combine this with coroutines for a very similar experience
to C#’s async functions. In the meantime, we can make use of
community libraries to accomplish this.

https://github.com/lewissbaker/cppcoro

44. Strings Library

Charconv

C++17 introduces <charconv> with a pair of functions for converting
primitive types like double to characters and reading them back from
characters. These functions don’t allocate memory, throw
exceptions, handle localization, or even add NUL terminators.
They’re intended to be used in serialization such as to JSON or
when sending strings over a network socket:

#include <charconv>

// Buffer to print the value to

char buf[100];

char* end = buf + sizeof(buf);

// Print 3.14 to the buffer in scientific notation

std::to_chars_result tcr{

 std::to_chars(buf, end, 3.14,

std::chars_format::scientific) };

// Add a NUL terminator to the returned pointer to the

character after the

// last printed character

*tcr.ptr = '\0';

DebugLog(buf); // 3.14e+00

DebugLog("Success?", tcr.ec == std::errc()); // true

DebugLog("End pointer index", tcr.ptr - buf); // 8

// Read 3.14e+00 from the buffer

double val;

std::from_chars_result fcr{ std::from_chars(buf, end,

val) };

DebugLog(val); // 3.14

DebugLog("Success?", fcr.ec == std::errc()); // true

DebugLog("End pointer index", fcr.ptr - buf); // 8

The TextReader and TextWriter classes in C# are probably the
closest analog as they can write to existing streams rather than
operating on individual string objects.

String

Next up is <string> which primarily defines the std::basic_string
class template. This is similar to the built-in String/string type in C#.
One key difference is that it is mutable, meaning that the string’s
characters can change. It is also not a managed reference, as C++
doesn’t have those, and must be wrapped in something like a
std::shared_ptr for a similar effect.

A template parameter of std::basic_string specifies the type of
characters in the string. The <string> header provides many aliases for
common character types so it’s rare to use std::basic_string directly:

Alias Template Meaning

std::string std::basic_string<char> C string

std::wstring std::basic_string<wchar_t>
Wide character
string

std::u8string std::basic_string<char8_t> UTF-8 string

std::u16string std::basic_string<char16_t> UTF-16 string

std::u32string std::basic_string<char32_t> UTF-32 string

There’s also a pmr version to change how memory is allocated:

Alias Template Meaning

std::pmr::string std::pmr::basic_string<char> C string

std::pmr::wstring std::pmr::basic_string<wchar_t>
Wide
character
string

Alias Template Meaning

std::pmr::u8string std::pmr::basic_string<char8_t>
UTF-8
string

std::pmr::u16string std::pmr::basic_string<char16_t>
UTF-16
string

std::pmr::u32string std::pmr::basic_string<char32_t>
UTF-32
string

Whichever we choose, the class “owns” the memory that the string is
stored in. That means it allocates memory when needed and
deallocates it in the destructor. It also provides a bunch of member
functions to perform common operations on the string. Here’s a
sampling of that functionality:

#include <string>

void Foo()

{

 // Allocate memory for the string

 std::string s{ "hello world" };

 // Read and write individual characters

 s[0] = 'H';

 s[6] = 'W';

 DebugLog(s); // Hello World

 // Get a NUL-terminated const pointer to the first

character (a C string)

 const char* cs = s.c_str();

 DebugLog(cs); // Hello World

 // Get a non-const pointer to the first character

 char* d = s.data();

 DebugLog(d); // Hello World

 // Check if the string is empty

 DebugLog(s.empty()); // false

 // Get the number of characters in the string

 DebugLog(s.size()); // 11

 DebugLog(s.length()); // 11

 // Check how much capacity is there to hold characters

 DebugLog(s.capacity()); // Maybe 15

 // Allocate enough memory to hold a certain number of

characters

 // Note: cannot be used to shrink the string

 s.reserve(128);

 DebugLog(s.capacity()); // At least 128

 // Request reducing allocated memory to just enough to

hold the string

 s.shrink_to_fit();

 DebugLog(s.capacity()); // Maybe 15

 // Add a character to the end

 s.push_back('!');

 DebugLog(s); // Hello World!

 // Check if the string starts with another string

 DebugLog(s.starts_with("Hello")); // true

 // Replace 1 character starting at index 5 with a comma

and a space

 s.replace(5, 1, ", ");

 DebugLog(s); // Hello, World!

 // Get a string of 5 characters starting at index 7

 std::string ss{ s.substr(7, 5) };

 DebugLog(ss); // World

 // Find an index of a string in the string

 std::string::size_type i = s.find("llo");

 DebugLog(i); // 2

 // Copy the string to another string

 std::string s2{ "other" };

 DebugLog(s2); // other

 s2 = s;

 DebugLog(s2); // Hello, World!

 // Compare strings' characters with overloaded

operators

 DebugLog(s == s2); // true

 // Empty the string

 s.clear();

 DebugLog(s); //

} // Destructor deallocates the string's memory

There are also some functions outside of the class that operate on
std::basic_string objects:

#include <string>

// Parse a float out of a string

// Throws an exception upon failure

std::string s{ "3.14" };

float f = std::stof(s);

DebugLog(f); // 3.14

// Convert a double to a string

std::string s2{ std::to_string(3.14) };

DebugLog(s2); // 3.140000

// Check if a string is empty

DebugLog(std::empty(s)); // false

// Get a non-const pointer to the first character

char* d = std::data(s);

DebugLog(d); // 3.14

Lastly, there is a user-defined literal in the
std::literals::string_literals namespace to create strings. The s
suffix is overloaded to create a string based on the type of characters
it’s applied to:

#include <string>

using namespace std::literals::string_literals;

// Plain string literals create a std::string

std::string s{ "hello"s };

// char8_t string literals create a UTF-8 string

std::u8string s8{ u8"hello"s };

Locale and Codecvt

Next up is <locale> to help with localization. The std::locale class
indentifies a locale like CultureInfo does in C#. Its member
functions and other functions in <locale> allow us to perform
operations within the context of that locale:

#include <string>

#include <locale>

// Construct a locale for a specific locale name

std::locale loc{ "en_US.UTF-8" };

// Lexicographically compare strings with the overloaded

() operator

std::string a{ "apple" };

std::string b{ "banana" };

DebugLog(loc(a, b)); // true

// Check if a character is in a category for this locale

DebugLog(std::isspace(' ', loc)); // true

DebugLog(std::islower('a', loc)); // true

DebugLog(std::isdigit('1', loc)); // true

// Convert between uppercase and lowercase in this locale

DebugLog(std::toupper('a', loc)); // A

DebugLog(std::tolower('Z', loc)); // z

Later in the book we’ll look at I/O and see how we can use
std::locale to localize value categories like time and money.

In the meantime, let’s look at wstring_convert and wbuffer_convert
which work with <codecvt> to provide conversion facilities between
different string formats like UTF-8 and UTF-16. These functions and
the <codecvt> header were deprecated in C++17 and there will
presumably be a replacement at some point in the future. For now,
we can use them like this example that converts “😎👍” between
UTF-8 and UTF-16:

#include <string>

#include <locale>

#include <codecvt>

void Foo()

{

 // Emojis as UTF-8 and UTF-16

 std::string u8 = "\xf0\x9f\x98\x8e\xf0\x9f\x91\x8d";

 std::u16string u16 = u"\xd83d\xde0e\xd83d\xdc4d";

 // Make a converter from UTF-8 to UTF-16

std::wstring_convert<std::codecvt_utf8_utf16<char16_t>,

char16_t> u8u16{};

 // Use it to convert from UTF-8 to UTF-16

 std::u16string toU16 = u8u16.from_bytes(u8);

 DebugLog("Success?", u16 == toU16); // true

 DebugLog("UTF-16 size", toU16.size()); // 4

 for (uint32_t c : toU16)

 {

 DebugLog(c);

 // Outputs:

 // 55357

 // 56846

 // 55357

 // 56397

 }

 // Make a converter from UTF-16 to UTF-8

std::wstring_convert<std::codecvt_utf8_utf16<char16_t>,

char16_t> u16u8 {};

 // Use it to convert UTF-16 to UTF-8

 std::string toU8 = u16u8.to_bytes(u16);

 DebugLog("Success?", u8 == toU8); // true

 DebugLog("UTF-8 size", toU8.size()); // 8

 for (uint32_t c : toU8)

 {

 DebugLog(c);

 // Outputs:

 // 4294967280

 // 4294967199

 // 4294967192

 // 4294967182

 // 4294967280

 // 4294967199

 // 4294967185

 // 4294967181

 }

}

Format

C++20 adds the <format> header to make formatting data as strings
easier and safer than existing methods like sprintf in the C
Standard Library. The std::format function is rather similar to string
interpolation in C#: $"Score: {score}".

#include <string>

#include <format>

#include <locale>

// Format a string

int score = 123;

std::string str{ std::format("Score: {}", score) };

DebugLog(str); // Score: 123

// Format a string for a specific locale

std::locale loc{ "en_US.UTF-8" };

str = std::format(loc, "Score: {}", score);

DebugLog(str); // Score: 123

We can specialize the std::formatter class template to enable
formatting our own types:

#include <format>

struct Vector2

{

 float X;

 float Y;

};

namespace std

{

 template<class TChar>

 struct std::formatter<Vector2, TChar>

 {

 template <typename TContext>

 auto parse(TContext& pc)

 {

 return pc.end();

 }

 template<typename TContext>

 auto format(Vector2 v, TContext& fc)

 {

 return std::format_to(fc.out(), "({}, {})",

v.X, v.Y);

 }

 };

}

Vector2 v{ 1, 2, 3 };

std::string s{ std::format("Vector: {}", v) };

DebugLog(s); // Vector: (1, 2, 3)

String View

C++17 introduces std::basic_string_view as a class template that
provides a read-only “view” into another string. It’s an adapter for string
literals and other arrays of characters as well as string classes like
std::basic_string. Unlike std::basic_string, it doesn’t “own” the
memory that holds the characters. That means it doesn’t allocate it or
deallocate it but instead acts like a pointer to existing memory and a
size_t to keep track of the length. As with other pointers, it’s important
to not use the std::basic_string_view after the string it points to is
deallocated.

Aliases are provided in parallel with std::basic_string:

Alias Template Meaning

std::string_view std::basic_string_view<char>
View of
C string

std::wstring_view std::basic_string_view<wchar_t>

View of
wide
character
string

std::u8string_view std::basic_string_view<char8_t>
View of
UTF-8
string

std::u16string_view std::basic_string_view<char16_t>
View of
UTF-16
string

std::u32string_view std::basic_string_view<char32_t>
View of
UTF-32
string

Here’s how to use them:

#include <string>

#include <string_view>

// A simple array of characters

const char cs[] = "C String";

// A view into the array of characters

std::string_view svcs{ cs };

// A std::basic_string

std::string bs{ "std::string" };

// A view into the std::basic_string

std::string_view svbs{ bs };

// Query the string's size

DebugLog(svcs.empty()); // false

DebugLog(svcs.size()); // 8

DebugLog(svcs.length()); // 8

// Read characters

DebugLog(svcs[2]); // S

DebugLog(svcs[100]); // Throws std::out_of_range exception

DebugLog(svcs.front()); // C

DebugLog(svcs.back()); // g

DebugLog(svcs.data()); // C String

// Copy part of the string

char buf[4] = { '\0' };

svcs.copy(buf, 3, 2);

DebugLog(buf); // Str

// Get a view of a sub-string. Does not copy characters.

std::string_view sub{ svcs.substr(5, 3) };

DebugLog(sub); // ing

// Compare string views' characters

DebugLog(svcs.compare(svbs)); // -1

DebugLog(svcs == svbs); // false

// C++20: check if the string starts or ends with a sub-

string

DebugLog(svcs.starts_with("C Str")); // true

DebugLog(svcs.ends_with("ING")); // false

// Find a sub-string's index

DebugLog(svcs.find("Str")); // 2

// Reduce the view by moving the view's pointer forward

// Does not modifiy the string

svcs.remove_prefix(2);

DebugLog(svcs); // String

// Reduce the view by reducing the view's size

// Does not modifiy the string

svcs.remove_suffix(3);

DebugLog(svcs); // Str

Again paralleling std::basic_view, there are also some functions
outside of the std::basic_string_view class that operate on
std::basic_string_view objects:

#include <string>

#include <string_view>

const char cs[] = "C String";

std::string_view svcs{ cs };

// Check if a string view is empty

DebugLog(std::empty(svcs)); // false

// Get a pointer to the first character

const char* d = std::data(svcs);

DebugLog(d); // C String

There is also a user-defined literal in the
std::literals::string_view_literals namespace to create string
views with the sv suffix. It’s an inline namespace of std::literals, so
we can avoid a little typing:

#include <string>

#include <string_view>

using namespace std::literals;

const char cs[] = "C String";

std::string_view svcs{ cs };

// Plain string literals create a std::string_view

std::string_view s{ "hello"sv };

// char8_t string literals create a UTF-8 string view

std::u8string_view s8{ u8"hello"sv };

Like std::basic_string, using std::basic_string_view is vastly more
convenient than using a C-style array of characters. Since both
std::basic_string and arrays of characters are implicitly and cheaply
converted to std::basic_string_view, we can use this type to gain that
convenience while supporting different kinds of strings.

The closest C# equivalent to this is ReadOnlySpan<char> as it provides a
“view” into the characters of a String. We’ll see C++’s generalized
std::span equivalent to this later in the book.

Regex

Finally for this chapter we have regular expressions in the <regex>
header. The std::basic_regex class template supports several
types of syntax via std::regex::awk, std::regex::grep,
std::regex::ECMAScript, and so forth:

#include <string>

#include <regex>

// A regular expression for YYYY-MM-DD dates with

ECMAScript grammar

// Each part of the date is captured in a group

std::regex re{

 "(\\d{4})-(\\d{2})-(\\d{2})",

 std::regex_constants::ECMAScript };

// Check if a string matches and get the results of the

match

std::cmatch results{};

DebugLog(std::regex_match("before 2021-03-15 after",

results, re)); // true

DebugLog(results.size()); // 4

DebugLog(results[0]); // 2021-03-15 (sub-string that

matched)

DebugLog(results[1]); // 2021 (first group)

DebugLog(results[2]); // 03 (second group)

DebugLog(results[3]); // 15 (third group)

// Replace the part of a string that matches

std::basic_string s{

 std::regex_replace(

 std::string{ "before 2021-03-15 after" }, re,

"YYYY-MM-DD") };

DebugLog(s); // before YYYY-MM-DD after

A wide variety of overloads are available to support various types of
strings, sub-strings, character types, case sensitivity, and so forth. In
particular, std::cmatch in the above example is an alias to the
std::match_results class template for C-style strings. Other aliases
for wide character strings and std::basic_string are available.

The C# equivalent of this are classes like Regex and Match in the
System.Text.RegularExpressions namespace.

Conclusion

The C++ Standard Library layers quite a lot of functionality on top of
a very humble basis. Simple characters and arrays of characters are
extended all the way up to regular expressions, string classes, and
string views. In between we have functionality for quick and
convenient serialization, parsing, and localization.

As is usual for the Standard Library, all of this is done via the
specialization of templates. We choose the most optimal version at
compile time rather than relying on runtime strategies like virtual
functions. We can specialize any of these templates to support new
types of strings or to format our own app’s types and reap all the
same benefits that standardized types like std::basic_string do.

45. Array Containers Library

Vector

Let’s start with one of the most commonly-used container types:
std::vector. This class, found in <vector>, is the equivalent of List
in C# as it implements a dynamic array. Here’s a sampling of its API:

#include <vector>

void Foo()

{

 // Create an empty vector of int

 std::vector<int> v{};

 // Add an element to the end

 v.push_back(123);

 // Construct an element in place at the end

 v.emplace_back(456);

 // Get size information

 DebugLog(v.empty()); // false

 DebugLog(v.size()); // 2

 DebugLog(v.capacity()); // At least 2

 DebugLog(v.max_size()); // Maybe 4611686018427387903

 // Request changes to capacity

 v.reserve(100); // Note: can't shrink

 DebugLog(v.capacity()); // 100

 v.shrink_to_fit();

 DebugLog(v.capacity()); // Maybe 2

 // Shrink to just the first element

 v.resize(1);

 // Add two defaulted elements to the end

 v.resize(3);

 // Access elements with overloaded index operator

 v[2] = 789;

 DebugLog(v[0], v[1], v[2]); // 123, 0, 789

 // Access first and last elements

 DebugLog(v.front()); // 123

 v.back() = 1000;

 DebugLog(v[2]); // 1000

 // Get a pointer to the first element

 int* p = v.data();

 DebugLog(p[0], p[1], p[2]); // 123, 0, 1000

 // Create a vector with four elements

 std::vector<int> v2{ 2, 4, 6, 8 };

 // Compare vectors' elements

 DebugLog(v == v2); // false

 // Replace the elements of v with the elements of v2

 v = v2;

 DebugLog(v.size()); // 4

 DebugLog(v[0], v[1], v[2], v[3]); // 2, 4, 6, 8

} // Destructors free memory of v and v2

In C++20, the <vector> header also provides a couple of non-
member functions to erase elements from a std::vector:

#include <vector>

std::vector<int> v1{ 100, 200, 200, 200, 300 };

// Erase every element that equals 200

std::vector<int>::size_type numErased = std::erase(v1,

200);

DebugLog(numErased); // 3

DebugLog(v1.size()); // 2

DebugLog(v1[0], v1[1]); // 100, 300

std::vector<int> v2{ 1, 2, 3, 4, 5 };

// Erase all the even numbers

numErased = std::erase_if(v2, [](int x) { return (x % 2)

== 0; });

DebugLog(numErased); // 2

DebugLog(v2.size()); // 3

DebugLog(v2[0], v2[1], v2[2]); // 1, 3, 5

As is the case with std::string, std::vector “owns” the memory that
elements are stored in. It allocates the memory when needed by the
constructor and functions like push_back. It deallocates the memory
when it needs to grow, in functions like shrink_to_fit, and
especially in the destructor. Unlike the managed List class in C#, it’s
not garbage-collected since C++ has no garbage collector. We can
simulate that with the reference-counted std::shared_ptr if needed.

Array

Sometimes we want to use an array but don’t want the overhead of a
dynamic array or we want to allocate it on the stack instead of the
heap. In C#, we’d use stackalloc or a fixed buffer. If heap
allocation was acceptable, we could also use a managed array. In
C++, we could use an array but that has some notable downsides. It
degrades to a pointer, its size isn’t easily inspected, and it lacks all
the convenient member functions that std::vector provides.

To address these issues, the <array> header provides the
std::array class template that holds a statically-sized array. While
std::vector holds a pointer to the first element of the array, a
std::array holds the actual array. It’s the difference between a
struct Vector { int* P; }; and struct Array { int E[100]; };.
This difference allows std::array to be allocated on the stack. It
also requires that the size be specified as a template parameter:

#include <array>

// Create an array of 3 int elements

std::array<int, 3> a{ 1, 2, 3 };

// Query its size

DebugLog(a.size()); // 3

DebugLog(a.max_size()); // 3

DebugLog(a.empty()); // false

// Read and write its elements

DebugLog(a[0], a[1], a[2]); // 1, 2, 3

a[0] = 10;

DebugLog(a.front()); // 10

DebugLog(a.back()); // 3

// Get a pointer to the first element

int* p = a.data();

DebugLog(p[0], p[1], p[2]); // 10, 2, 3

// Create another array of 3 int elements

std::array<int, 3> a2{ 10, 2, 3 };

// Compare elements of arrays

DebugLog(a == a2); // true

Note that std::array doesn’t require that it’s allocated on the stack.
We can easily allocate one on the heap like any other class:

#include <array>

std::array<int, 3>* a = new std::array<int, 3>{ 1, 2, 3

};

DebugLog((*a)[0], (*a)[1], (*a)[2]); // 1, 2, 3

delete a;

C++20 adds the non-member std::to_array function to copy an
array into a std::array:

#include <array>

// Plain array

int a[3] = { 1, 2 };

// Copy the plain array into a std::array

std::array<int, 3> c{ std::to_array(a) };

// Changing one doesn't change the other

a[0] = 10;

c[1] = 20;

DebugLog(a[0], a[1]); // 10, 2

DebugLog(c[0], c[1]); // 1, 20

Valarray

The <valarray> header is part of the numbers library but also a
container. The same can be said for std::basic_string. Like
std::vector, both are backed by arrays. The major difference is the
set of member functions which operate on those arrays. As
std::basic_string has functions for finding sub-strings,
std::valarray is geared toward operations on every element of a
std::valarray object or on pairs of elements in two std::valarray
objects:

#include <valarray>

void Foo()

{

 // Create an array of two ints

 std::valarray<int> va1{ 10, 20 };

 // Create another array of two ints

 std::valarray<int> va2{ 10, 30 };

 // Compare element 0 in each, element 1 in each, and

so on

 // Return a valarray of comparison results

 std::valarray<bool> eq{ va1 == va2 };

 DebugLog(eq[0], eq[1]); // true, false

 // Add elements

 std::valarray<int> sums{ va1 + va2 };

 DebugLog(sums[0], sums[1]); // 20, 50

 // Access elements

 DebugLog(va1[0]); // 10

 va1[1] = 200;

 DebugLog(va1[0], va1[1]); // 10, 200

 // Shift elements 1 toward the front, filling in with

zeroes

 std::valarray<int> shifted{ va1.shift(1) };

 DebugLog(shifted[0], shifted[1]); // 200, 0

 // Shift elements 1 toward the front, rotating around

to the back

 std::valarray<int> cshifted{ va1.cshift(1) };

 DebugLog(cshifted[0], cshifted[1]); // 200, 10

 // Copy all elements to another valarray

 va1 = va2;

 DebugLog(va1[0], va1[1]); // 10, 30

 // Call a function with each element and assign the

return value to it

 std::valarray<int> plusOne{ va1.apply([](int x) {

return x + 1; }) };

 DebugLog(plusOne[0], plusOne[1]); // 11, 33

 // Take 2^4 and 3^2

 std::valarray<float> bases{ 2, 3 };

 std::valarray<float> powers{ 4, 2 };

 std::valarray<float> squares{ std::pow(bases, powers)

};

 DebugLog(squares[0], squares[1]); // 16, 9

} // Destructors free memory of all valarrays

Like std::vector, std::valarray “owns” the memory that stores its
elements. C# doesn’t have an equivalent of this class template.

Some helper classes exist to “slice” more than one element out of a
std::valarray by passing instances of the class to the overloaded
[] operator:

#include <valarray>

std::valarray<int> va1{ 10, 20, 30, 40, 50, 60, 70 };

// A slice that starts at index 1 plus 2 elements with 0

stride

std::slice s{ 1, 2, 0 };

// Slice the valarray to get a slice_array that refers to

the slice

std::slice_array<int> sa{ va1[s] };

// Copy the slice into a new valarray

std::valarray<int> sliced{ sa };

DebugLog(sliced.size()); // 2

DebugLog(sliced[0], sliced[1]); // 20, 30

// Slice that starts at index 1 with sizes 2 and 3 and

strides 1 and 2

std::gslice g{ 1, {2, 3}, {1, 2} };

// Slice the valarray to get a gslice_array that refers

to the slice

std::gslice_array ga{ va1[g] };

// Copy the slice into a new valarray

std::valarray<int> gsliced{ ga };

DebugLog(gsliced.size()); // 6

DebugLog(gsliced[0], gsliced[1], gsliced[2]); // 20, 40,

60

DebugLog(gsliced[3], gsliced[4], gsliced[5]); // 30, 50,

70

Deque

std::deque, pronounced like “deck” and located in <deque>, is a
doubly-ended queue that owns its elements. Internally, it holds a list
of arrays but this is hidden by its API which gives the appearance
that it’s one contiguous array similar to a std::vector. This means
element access involves a second indirection, but it’s fast to add and
remove elements from the beginning and end of a std::deque. C#
has no equivalent to this container type. Here’s how to use it:

#include <deque>

void Foo()

{

 // Create a deque of three floats

 std::deque<float> d{ 10, 20, 30 };

 // Query its size

 DebugLog(d.size()); // 3

 DebugLog(d.max_size()); // Maybe 4611686018427387903

 DebugLog(d.empty()); // false

 // Access its elements

 DebugLog(d.front()); // 10

 d[1] = 200;

 DebugLog(d[1]); // 200

 DebugLog(d.back()); // 30

 // Add to and remove from the beginning and the front

 d.push_front(5);

 d.push_back(35);

 DebugLog(d[0], d[1], d[2], d[3], d[4]); // 5, 10,

200, 30, 35

 d.pop_front();

 d.pop_back();

 DebugLog(d[0], d[1], d[2]); // 10, 200, 30

 // Remove all but the first two elements

 d.resize(2);

 DebugLog(d.size()); // 2

 DebugLog(d[0], d[1]); // 10, 200

 // Compare elements of two deques

 std::deque<float> d2{ 10, 200 };

 DebugLog(d == d2); // true

 // Remove all of a particular element value

 std::deque<float>::size_type numErased =

std::erase(d, 10);

 DebugLog(numErased); // 1

 DebugLog(d[0]); // 200

 // Remove all elements that a function returns true

for

 numErased = std::erase_if(d2, [](float x) { return x

< 100; });

 DebugLog(numErased); // 1

 DebugLog(d2[0]); // 200

} // Destructors free memory of all deques

Queue

Unlike std::deque, the std::queue class template in <queue> is an
adapter to provide a queue API to another collection. The default
container type is std::deque, but other containers with back, front,
push_back, and push_front member functions may be used. The
std::queue contains this collection type and provides member
functions that are implemented by calls to the contained collection.

#include <queue>

#include <deque>

void Foo()

{

 // Explicitly use std::deque<int> to hold elements of

a std::queue of int

 std::queue<int, std::deque<int>> qd{};

 // Use the default collection type, which is

std::deque

 // It's initially empty

 std::queue<int> q{};

 // Add elements to the back

 q.push(10);

 q.push(20);

 q.emplace(30); // In-place construction

 // Query the size

 DebugLog(q.size()); // 3

 DebugLog(q.empty()); // false

 // Access only the first and last elements

 DebugLog(q.front()); // 10

 DebugLog(q.back()); // 30

 // Remove elements from the front

 q.pop();

 DebugLog(q.size()); // 2

 DebugLog(q.front()); // 20

 // Copy elements to another queue

 std::queue<int> q2{};

 q2 = q;

 DebugLog(q2.size()); // 2

 DebugLog(q2.front()); // 20

 DebugLog(q2.back()); // 30

} // Destructors free memory of all queues

C# has an equivalent Queue class. Unlike std::queue, it’s not an
adapter for another collection type. Instead, it implements a
particular collection internally.

Stack

The other adapter type, similar to std::queue, is std::stack in the
<stack> header. It also defaults to std::deque as its collection type.
Since stacks only operate on the back, more types of collections can
be used. All they need to have are back, push_back, and pop_back
member functions:

#include <stack>

#include <vector>

void Foo()

{

 // Make a stack backed by a std::vector

 std::stack<int, std::vector<int>> sv{};

 // Make a stack backed by the default std::deque

 std::stack<int> s{};

 // Add elements to the back

 s.push(10);

 s.push(20);

 s.emplace(30); // In-place construction

 // Query the size

 DebugLog(s.size()); // 3

 DebugLog(s.empty()); // false

 // Access only the last element

 DebugLog(s.top()); // 30

 // Remove elements from the back

 s.pop();

 DebugLog(s.size()); // 2

 DebugLog(s.top()); // 20

 // Copy elements to another stack

 std::stack<int> s2{};

 s2 = s;

 DebugLog(s2.size()); // 2

 DebugLog(s2.top()); // 20

} // Destructors free memory of all stacks

Also like Queue, C# has a std::stack equivalent in Stack. It also is
not an adapter, but a uniquely-implemented container type.

Conclusion

Arrays are so ubiquitous that the C++ Standard Library provides
several container types to wrap and access them. vector, array, and
valarray join basic_string in holding elements in a contiguous
block of memory. The vector type provides resizing, array provides
stack allocation and low overhead, and valarray provides element-
wise access and advanced slicing. C#’s has a close equivalent to
vector in List, but stackalloc only supporting unmanaged types
limits it quite a lot compared to array and there’s simply no analog to
valarray.

The deque type is suprisingly useful when we need to cheaply add to
and remove from the front of an array. While not completely
contiguous in memory, it is still mostly contiguous and may represent
an acceptable tradeoff given that insertion and removal operations at
the front of the collection are now in O(1) instead of O(N). C# lacks
this collection type.

Finally, there are queue and stack as adapter types for any collection
providing the necessary member functions. The C# Queue and Stack
classes instead mandate particular collection implementations.

46. Other Containers Library

Unordered Map

The <unordered_map> header provides C++’s Dictionary equivalent:
std::unordered_map. As with other containers like std::vector, it
“owns” the memory that keys and values are stored in. Here’s a
sampling of the API:

#include <unordered_map>

void Foo()

{

 // Hash map of int keys to float values

 std::unordered_map<int, float> ifum{};

 // Add a key-value pair

 ifum.insert({ 123, 3.14f });

 // Read the value that 123 maps to

 DebugLog(ifum[123]); // 3.14

 // Try to read the value that 456 maps to

 // There's no such key, so insert a default-

initialized value

 DebugLog(ifum[456]); // 0

 // Query size

 DebugLog(ifum.empty()); // false

 DebugLog(ifum.size()); // 2

 DebugLog(ifum.max_size()); // Maybe

768614336404564650

 // Try to read and throw an exception if the key

isn't found

 DebugLog(ifum.at(123)); // 3.14

 DebugLog(ifum.at(1000)); // throws std::out_of_range

exception

 // insert() does not overwrite

 ifum.insert({ 123, 2.2f }); // does not overwrite

3.14

 DebugLog(ifum[123]); // 3.14

 // insert_or_assign() does overwrite

 ifum.insert_or_assign(123, 2.2f); // overwrites 3.14

 DebugLog(ifum[123]); // 2.2

 // emplace() constructs in-place

 ifum.emplace(456, 1.123f);

 // Remove an element

 ifum.erase(456);

 DebugLog(ifum.size()); // 1

} // ifum's destructor deallocates the memory storing

keys and values

A std::unordered_multimap is also available for when there are
potentially multiple of the same key. C# has no equivalent of this
class template, but it can be approximated with a Dictionary<TKey,
List<TValue>>. Here’s how to use it:

#include <unordered_map>

void Foo()

{

 // Create an empty multimap that maps int to float

 std::unordered_multimap<int, float> ifumm{};

 // Insert two of the same key with different values

 ifumm.insert({ 123, 3.14f });

 ifumm.insert({ 123, 2.2f });

 // Check how many values are mapped to the 123 key

 DebugLog(ifumm.count(123)); // 2

 // C++20: check if there are any values mapped to the

123 key

 DebugLog(ifumm.contains(123)); // true

 // Find one of the key-value pairs for the 123 key

 const auto& found = ifumm.find(123);

 DebugLog(found->first, found->second); // Maybe 123,

3.14

 // Loop over all the key-value pairs for the 123 key

 auto range = ifumm.equal_range(123);

 for (auto i = range.first; i != range.second; ++i)

 {

 DebugLog(i->first, i->second); // 123, 3.14 and

123, 2.2

 }

 // Remove all the key-value pairs with a given key

 ifumm.erase(123);

 DebugLog(ifumm.size()); // 0

} // ifumm's destructor deallocates key and value memory

C++20 adds the usual std::erase_if non-member function found
with the array container types to work with std::unordered_map and
std::unordered_multimap:

#include <unordered_map>

// Create maps with 2 key-value pairs each

std::unordered_multimap<int, float> umm{ {123, 3.14},

{456, 2.2f} };

std::unordered_map<int, float> um{ {123, 3.14}, {456,

2.2f} };

// Erase all the key-value pairs where the key is less

than 200

auto lessThan200 = [](const auto& pair) {

 const auto& [key, value] = pair;

 return key < 200;

};

std::erase_if(um, lessThan200);

std::erase_if(umm, lessThan200);

// 123 key has 0 values associated with it

DebugLog(um.count(123)); // 0

DebugLog(umm.count(123)); // 0

Map

The <map> header provides ordered versions of std::unordered_map
and std::unordered_multimap. They’re called, naturally, std::map
and std::multimap. The basics of their APIs are very similar to the
unordered counterparts, which helps with generic programming, but
there are also some differences.

Let’s start with std::map, which is typically a red-black tree. The
closest C# equivalent to this container is OrderedDictionary, but that
class doesn’t support generic key and value types unlike std::map
and Dictionary. Here’s a sampling of the std::map functionality:

#include <map>

void Foo()

{

 // Create a map with three keys

 std::map<int, float> m{ {456, 2.2f}, {123, 3.14},

{789, 42.42f} };

 // Many functions from other containers are available

 DebugLog(m.size()); // 3

 DebugLog(m.empty()); // false

 m.insert({ 1000, 2000.0f });

 m.erase(123);

 m.emplace(100, 9.99f);

 // Ordering by key is guaranteed

https://en.wikipedia.org/wiki/Red%E2%80%93black_tree

 for (const auto& item : m)

 {

 DebugLog(item.first, item.second);

 // Prints:

 // 100, 9.99

 // 456, 2.2

 // 789, 42.42

 // 1000, 2000

 }

} // m's destructor deallocates key and value memory

Like std::unordered_multimap, std::multimap also has no C#
equivelent. We can approximate it with an OrderedDictionary whose
values are List<TValue> objects but with the same downside of
OrderedDictionary not supporting generic key and value types.
Regardless, std::multimap supports mapping multiple of the same
key and is also typically a red-black tree. Values are stored in
insertion order:

#include <map>

void Foo()

{

 // Create a multimap with three keys: two are

duplicated

 std::multimap<int, float> mm{ {456, 42.42f}, {123,

3.14f}, {123, 2.2f} };

 // Many functions from other containers are available

 DebugLog(mm.size()); // 3

 DebugLog(mm.empty()); // false

 mm.insert({ 1000, 2000.0f });

 mm.erase(456);

 mm.emplace(100, 9.99f);

 // Ordering by key is guaranteed

 for (const auto& item : mm)

 {

 DebugLog(item.first, item.second);

 // Prints:

 // 100, 9.99

 // 123, 3.14

 // 123, 2.2

 // 1000, 2000

 }

} // mm's destructor deallocates key and value memory

Unordered Set

The <unordered_set> header provides the equivalent of HashSet in
C#: std::unordered_set. It’s like a std::unordered_map except that
there are only keys so the API is simpler:

#include <unordered_set>

void Foo()

{

 // Create a set with four values

 std::unordered_set<int> us{ 123, 456, 789, 1000 };

 // Many functions from other containers are available

 DebugLog(us.size()); // 4

 DebugLog(us.empty()); // false

 us.insert(2000);

 us.erase(456);

 us.emplace(100);

 DebugLog(us.count(123)); // 1

} // us's destructor deallocates value memory

A std::unordered_multiset is also available to support multiple of
the same value. There’s no C# version of this, but a
Dictionary<TKey, int> can be used to approximate it by using the
value to count the number of keys. That takes additional memory
and is somewhat awkward to use compared the straightforward API
of std::unordered_multiset:

#include <unordered_set>

void Foo()

{

 // Create a multiset with six values: two are

duplicated

 std::unordered_multiset<int> ums{ 123, 456, 123, 789,

1000, 1000 };

 // Many functions from other containers are available

 DebugLog(ums.size()); // 6

 DebugLog(ums.empty()); // false

 ums.insert(2000);

 ums.erase(123); // erases both

 ums.emplace(100);

 DebugLog(ums.count(1000)); // 2

} // ums's destructor deallocates value memory

Set

As with maps, ordered versions of the set classes are available.
Predictably, the <set> header provides std::set and std::multiset.
Both are implemented with more red-black trees. C# has a
SortedSet class equivalent to std::set but not equivalent to
std::multiset.

The APIs of both std::set and std::multiset are also very similar
to their unordered counterparts. Here’s std::set:

#include <set>

void Foo()

{

 // Create a set with four values

 std::set<int> s{ 123, 456, 789, 1000 };

 // Many functions from other containers are available

 DebugLog(s.size()); // 4

 DebugLog(s.empty()); // false

 s.insert(2000);

 s.erase(456);

 s.emplace(100);

 DebugLog(s.count(123)); // 1

 // Ordering by key is guaranteed

 for (int x : s)

 {

 DebugLog(x);

 // Prints:

 // 100

 // 123

 // 789

 // 1000

 // 2000

 }

} // s's destructor deallocates value memory

And here’s std::multiset:

#include <set>

void Foo()

{

 // Create a multiset with six values: two are

duplicated

 std::multiset<int> ms{ 123, 456, 123, 789, 1000, 1000

};

 // Many functions from other containers are available

 DebugLog(ms.size()); // 6

 DebugLog(ms.empty()); // false

 ms.insert(2000);

 ms.erase(123); // erases both

 ms.emplace(100);

 DebugLog(ms.count(1000)); // 2

 // Ordering is guaranteed

 for (int x : ms)

 {

 DebugLog(x);

 // Prints:

 // 100

 // 456

 // 789

 // 1000

 // 1000

 // 2000

 }

} // ms's destructor deallocates value memory

List

Next up is the <list> header and it’s std::list class template that
implements a doubly-linked list. This is equivalent to the LinkedList
class in C#. It’s API is similar to std::vector except that operations
on the front of the list are also supported and indexing isn’t allowed
since that would require an expensive walk of the list:

#include <list>

void Foo()

{

 // Create an empty list

 std::list<int> li{};

 // Add some values

 li.push_back(456);

 li.push_front(123);

 // Grow by inserting default-initialized values

 li.resize(5);

 // Query size

 DebugLog(li.empty()); // false

 DebugLog(li.size()); // 5

 // Indexing isn't supported. Loop instead.

 for (int x : li)

 {

 DebugLog(x);

 // Prints:

 // 123

 // 456

 // 0

 // 0

 // 0

 }

 // Remove values

 li.pop_back();

 li.pop_front();

 // Special operations

 li.sort();

 li.remove(0); // remove all zeroes

 li.remove_if([](int x) { return x < 200; }); //

remove all under 200

} // li's destructor deallocates value memory

Forward List

A singly-linked list, std::forward_list, is also provided via
<forward_list>. C# doesn’t provide an equivalent container. The
API is like the reverse of std::vector since only operations on the
front of the list are supported. Unlike most other containers, a size
function isn’t provided since it would require walking the entire list to
count nodes:

#include <forward_list>

void Foo()

{

 // Create an empty list

 std::forward_list<int> li{};

 // Add some values

 li.push_front(123);

 li.push_front(456);

 // Grow by inserting default-initialized values

 li.resize(5);

 // Query size

 DebugLog(li.empty()); // false

 // Indexing isn't supported. Loop instead.

 for (int x : li)

 {

 DebugLog(x);

 // Prints:

 // 123

 // 456

 // 0

 // 0

 // 0

 }

 // Remove values

 li.pop_front();

 // Special operations

 li.sort();

 li.remove(0); // remove all zeroes

 li.remove_if([](int x) { return x < 200; }); //

remove all under 200

} // li's destructor deallocates value memory

Conclusion

The C++ Standard Library provides a robust and consistent offering
of non-array collection types to go along with array collection types
like std::vector. The APIs are all very similar, which is great for
generic programming as the collection type can easily be made into
a type parameter.

Whether we need a set, map, or list, ordering or hashing, and even
support for duplicate keys or values, a class template is on offer. In
contrast, C#’s offerings are more limited as there’s sometimes no
generic version, no support for duplicate keys, or no class that
handles ordering. These may be less-common use cases, but it’s
nice to have standardized tools available when needed.

47. Containers Library Wrapup

Iterators

C# containers like List implement the IEnumerable<T> interface.
This means they provide a GetEnumerator method that returns an
IEnumerator<T>. This in turn provides a Current property to access
the current element and a MoveNext method to move to the next
element.

C++ containers provide the same support for this abstract form of
traversing a collection, but they call the object keeping track of the
traversal an “iterator” instead of an “enumerator.” Regardless of the
container type, it’ll have two member type aliases: iterator and
const_iterator. Here’s how we use them the way we’d manually
traverse a collection vith IEnumerator<T> in C#:

#include <vector>

// Create a vector with three elements

std::vector<int> v{ 1, 2, 3 };

// Call begin() to get an iterator that's at the first

element: 1

// Call end() to get an iterator that's one past the last

element: 3

// Use the overloaded pre-increment operator to advance

to the next element

for (std::vector<int>::iterator it{ v.begin() }; it !=

v.end(); ++it)

{

 // Use the overloaded dereference operator to get the

element

 DebugLog(*it); // 1 then 2 then 3

}

It’s worth noting that while both the pre-increment and post-
increment operators are overloaded for iterator types, the pre-
increment operator is always at least as fast as the post-increment
operator. They may be equally fast, but it’s a good habit to use the
pre-increment operator when manually using iterators.

There are a few variations of the above canonical loop that are
commonly seen:

#include <vector>

std::vector<int> v{ 1, 2, 3 };

// Use the free functions begin() and end() instead of

the member functions

for (std::vector<int>::iterator it{ std::begin(v) }; it

!= std::end(v); ++it)

{

 DebugLog(*it); // 1 then 2 then 3

}

// Use cbegin() and cend() to get constant (i.e. read-

only) iterators

for (

 std::vector<int>::const_iterator it{ v.cbegin() };

 it != v.cend();

 ++it)

{

 DebugLog(*it); // 1 then 2 then 3

}

// Use auto to avoid the long type name

for (auto it{ v.cbegin() }; it != v.cend(); ++it)

{

 DebugLog(*it); // 1 then 2 then 3

}

The design of iterators and functions like begin and end make all of
the container types compatible with range-based for loops. Since
they were introduced in C++11 it’s now far less common to see these
verbose loops that manually control iterators in the simple, and most
common, “start to end” fashion. Instead, we just use a for loop and
let the compiler generate the same code as the manual version:

#include <vector>

std::vector<int> v{ 1, 2, 3 };

// Non-const copies of every element

for (int x : v)

{

 DebugLog(x); // 1 then 2 then 3

}

// Non-const references to every element

for (int& x : v)

{

 DebugLog(x); // 1 then 2 then 3

}

// const copies of every element

for (const int x : v)

{

 DebugLog(x); // 1 then 2 then 3

}

// const references to every element

for (const int& x : v)

{

 DebugLog(x); // 1 then 2 then 3

}

Note that auto can be used instead of int in all of the above
examples.

Besides the basics of traversing a collection from start to end, many
iterator types support more functionality. For example, the iterators of
a std::vector support random access via the overloaded it[N]
operator. We’ll go into these in-depth in the next chapter.

Allocators

C++ containers allow customization of how they allocate memory in
two ways. First, the classic way is to pass an allocator type as a
template argument. This defaults to the std::allocator class
template we saw in the System Integration Library. We can create
our own type of allocator though and use it to improve performance,
add safety checks, allocate memory out of special pools such as the
file system or VRAM, or anything else we’d like to do:

#include <list>

// Custom allocator using malloc() and free() from the C

Standard Library

template <class T>

struct MallocFreeAllocator

{

 // This allocator allocates objects of type T

 using value_type = T;

 // Default constructor

 MallocFreeAllocator() noexcept = default;

 // Converting copy constructor

 template<class U>

 MallocFreeAllocator(const MallocFreeAllocator<U>&)

noexcept

 {

 }

 // Allocate enough memory for n objects of type T

 T* allocate(const size_t n) const

 {

 DebugLog("allocate");

 return reinterpret_cast<T*>(malloc(n *

sizeof(T)));

 }

 // Deallocate previously-allocated memory

 void deallocate(T* const p, size_t) const noexcept

 {

 DebugLog("deallocate");

 free(p);

 }

};

void Foo()

{

 // Use the custom allocator to allocate the list's

memory

 std::list<int, MallocFreeAllocator<int>> li{ 1, 2, 3

};

 for (int x : li)

 {

 DebugLog(x);

 }

}

What exactly this prints, besides at least one “allocate”, then “1”, “2”,
and “3”, then at least one “deallocate” depends on the
implementation of the std::list type, but it’s likely to look
something like this:

allocate

allocate

allocate

allocate

allocate

1

2

3

deallocate

deallocate

deallocate

deallocate

deallocate

If we’d rather construct the allocator ourselves, perhaps to customize
it in some way, rather than letting the container construct it, then we
can pass it to the container’s constructor:

// Create an allocator

MallocFreeAllocator<int> alloc{};

// Pass it to the constructor to be used

std::list<int, MallocFreeAllocator<int>> li{ {1, 2, 3},

alloc };

The good thing about this kind of customization is that no virtual
functions are required so we don’t take a performance hit compared
to direct function calls. The bad part is that the allocator becomes
part of the type of the container. The above variable has type
std::list<int, MallocFreeAllocator<int>> which is different from
the default type std::list<int, std::allocator<int>>. This
disables certain functionality such as using the overloaded =
operator to assign all the elements of a list to another list or to mix
and match iterator types.

The other form of memory allocation customization is designed to
make the opposite trade-off. Available since C++17, it takes the
performance hit of virtual function calls rather than create discrete
types that include the allocator. We’ve seen this before with
std::pmr::basic_string and it’s an option that’s also available on the
other container types. There are class templates such as
std::pmr::vector and std::pmr::list that mirror their non-pmr
versions nearly identically:

#include <list>

#include <memory_resource>

// A std::pmr::memory_resource that uses the new and

delete operators

struct NewDeleteMemoryResource : public

std::pmr::memory_resource

{

 // Allocate bytes, not a particular type

 virtual void* do_allocate(

 std::size_t numBytes, std::size_t alignment)

override

 {

 return new uint8_t[numBytes];

 }

 // Deallocate bytes

 virtual void do_deallocate(

 void* p, std::size_t numBytes, std::size_t

alignment) override

 {

 delete[](uint8_t*)p;

 }

 // Check if this resource's allocation and

deallocation are compatible

 // with that of another resource

 virtual bool do_is_equal(

 const std::pmr::memory_resource& other) const

noexcept override

 {

 // Compatible if the same type

 return typeid(other) ==

typeid(NewDeleteMemoryResource);

 }

};

void Foo()

{

 // Make the memory resource

 NewDeleteMemoryResource mr{};

 // Make the polymorphic allocator backed by the

memory resource

 std::pmr::polymorphic_allocator<int> polyalloc{ &mr

};

 // Pass the polymorphic allocator to the constructor

to be used

 std::pmr::list<int> li1{ {1, 2, 3}, polyalloc };

 for (int x : li1)

 {

 DebugLog(x); // 1 then 2 then 3

 }

 // Class template instantiations are compatible

 // This has a different polymorphic allocator: the

default

 std::pmr::list<int> li2 = li1;

 for (int x : li2)

 {

 DebugLog(x); // 1 then 2 then 3

 }

}

C#’s managed memory model means there’s no customization of
any container’s allocation strategy.

Free Functions

A number of free functions, i.e. those that aren’t a member of any
class, work on all the container types. We’ve already seen
std::begin and std::end above to get iterators. We’ve also seen
C++20’s std::erase and std::erase_if for several array and non-
array container types.

There’s one more free function that works on containers to talk
about: std::swap. This function swaps the contents of one container
with the contents of another container. This can often be performed
very efficiently, such as swapping pointers. For example, a simple
array type might overload std::swap like this:

// Forward-declare the array type

template <typename T>

class SimpleArray;

// Forward-declare the std::swap function overload

namespace std

{

 template<class T>

 void swap(SimpleArray<T>& a, SimpleArray<T>& b)

noexcept;

}

// Define the array type

template <typename T>

class SimpleArray

{

private:

 T* Elements;

 int Length;

 // Allow the std::swap overload to access private

members

 friend void std::swap(SimpleArray<T>& a,

SimpleArray<T>& b) noexcept;

public:

 SimpleArray(int length)

 {

 Elements = new T[length];

 Length = length;

 }

 ~SimpleArray()

 {

 delete[] Elements;

 }

 int GetLength()

 {

 return Length;

 }

 int& operator[](int index)

 {

 if (index < 0 || index >= Length)

 {

 throw std::out_of_range{"Index out of

bounds"};

 }

 return Elements[index];

 }

};

// Define the std::swap function overload

namespace std

{

 template<class T>

 void swap(SimpleArray<T>& a, SimpleArray<T>& b)

noexcept

 {

 // Swap pointers instead of copying all the

elements

 T* elements = a.Elements;

 a.Elements = b.Elements;

 b.Elements = elements;

 // Swap lengths

 int length = a.Length;

 a.Length = b.Length;

 b.Length = length;

 }

}

void Foo()

{

 SimpleArray<int> a{ 3 };

 a[0] = 1;

 a[1] = 2;

 a[2] = 3;

 SimpleArray<int> b{ 5 };

 b[0] = 10;

 b[1] = 20;

 b[2] = 30;

 b[3] = 40;

 b[4] = 50;

 for (int i = 0; i < a.GetLength(); ++i)

 {

 DebugLog(a[i]); // 1, 2, 3

 }

 for (int i = 0; i < b.GetLength(); ++i)

 {

 DebugLog(b[i]); // 10, 20, 30, 40, 50

 }

 // Swap the contents of a and b

 std::swap(a, b);

 for (int i = 0; i < a.GetLength(); ++i)

 {

 DebugLog(a[i]); // 10, 20, 30, 40, 50

 }

 for (int i = 0; i < b.GetLength(); ++i)

 {

 DebugLog(b[i]); // 1, 2, 3

 }

}

Overloads like the one we created above for SimpleArray exist for all
the C++ Standard Library containers. It’s even typical to create
overloads like the above for any custom container types we create.
Usage with types like std::unordered_set looks just the same:

#include <unordered_set>

// Create collections

std::unordered_set<int> a{ 1, 2, 3 };

std::unordered_set<int> b{ 10, 20, 30, 40, 50 };

// Print initial contents

for (int x : a)

{

 DebugLog(x); // 1, 2, 3

}

for (int x : b)

{

 DebugLog(x); // 10, 20, 30, 40, 50

}

// Swap contents

std::swap(a, b);

// Print swapped contents

for (int x : a)

{

 DebugLog(x); // 10, 20, 30, 40, 50

}

for (int x : b)

{

 DebugLog(x); // 1, 2, 3

}

Exceptions

C++ supports a wide variety of error-handling techniques ranging
from simple return codes to exceptions, std::optional, and even the C
Standard Library’s errno. Most of the C++ Standard Library uses
exceptions though. This includes all the container types, such as
detecting out-of-bounds conditions like SimpleArray did above:

#include <vector>

std::vector<int> v{ 1, 2, 3 };

try

{

 int x = v[1000];

 DebugLog(x); // Does not get printed

}

catch (const std::out_of_range& ex)

{

 DebugLog(ex.what()); // Maybe "vector subscript out

of range"

}

The same is true for myriad other erroneous operations. For
example, calling front on an empty std::vector throws an
exception because there’s no way it could possibly return a valid T&
or a T& indicating an error that would work with all types of T:

#include <vector>

std::vector<int> v{};

try

{

 int x = v.front();

 DebugLog(x); // Does not get printed

}

catch (const std::out_of_range& ex)

{

 DebugLog(ex.what()); // Maybe "front() called on

empty vector"

}

This behavior is very similar to C# where exceptions are used as the
preferred error-handling mechanism. Still, some C++ codebases and
style guides, especially in video games, forbid using exceptions. C++
compilers typically provide a way to disable this language feature
and even to change the error-handling mechanism of the C++
Standard Library so that it doesn’t use exceptions. Some Standard
Library variants, notably EASTL by Electronic Arts, also support
enabling and disabling exceptions.

https://google.github.io/styleguide/cppguide.html#Exceptions
https://github.com/electronicarts/EASTL

In-Place Construction

We’ve seen the use of functions with “emplace” in their names, but
not yet delved into what that means. So far they’ve behaved just like
other functions such as those with “push” in their names. Now we’ll
see how they’re different:

#include <vector>

// A class that logs its lifecycle

struct Noisy

{

 int Val;

 Noisy(int val)

 {

 Val = val;

 DebugLog(Val, "val ctor");

 }

 Noisy(const Noisy& other)

 {

 Val = other.Val;

 DebugLog(Val, "copy ctor");

 }

 ~Noisy()

 {

 DebugLog(Val, "dtor");

 }

};

std::vector<Noisy> v{};

v.reserve(2);

v.push_back(123);

// Prints:

// 123, val ctor

// 123, copy ctor

// 123, dtor

v.emplace_back(456);

// Prints:

// 456, val ctor

Both push_back and emplace_back add an element to the end of a
std::vector, but they do it in different ways. The “push” version
takes a reference to an element, a Noisy& or Noisy&& in this case,
and copies it to the array that std::vector contains. That means this
humble function call actually performs several steps.

First, implicitly convert 123, which is an rvalue because it doesn’t
have a name, to a Noisy&& rvalue reference by inserting a call to the
Noisy(int) constructor. This is why we see the “123, val ctor” log
message. The call now looks like this:

v.push_back(Noisy{123});

Second, the implementation of push_back copies the parameter to its
array of Noisy objects. It’s as though push_back included a line that
used “placement new” to call the copy constructor with this being the
appropriate location in its array. This is why we see the “123, copy
ctor” log message. Here’s a pseudo-code version of how that might
look:

void push_back(T&& value)

{

 new (&Elements[EndIndex]) Noisy{ value };

}

Finally, the temporary Noisy created by the implicit conversion in the
first step is destroyed at the end of the statement. As a result, we
see the “123, dtor” log message.

On the other hand, emplace_back does not take the element to add
to the std::vector. Instead, it takes the arguments to pass to the
“placement new” operator. It’s as though push_back is implemented
like this:

void push_back(int val)

{

 new (&Elements[EndIndex]) Noisy{ val };

}

This means there’s no implicit conversion and therefore only one
object is created. We see this with the “456, val ctor” log message.
Of course the real implementation of push_back is more complicated
so it can work on the arbitrary numbers of parameters required by
various element types T.

There’s no equivalent to this in C# as all element additions use the
“push” style of copying. In the case of managed types, a managed
reference is copied. The size of the copy is just a pointer, but another
reference to the object is created and must be tracked for future
garbage collection. Unmanaged types such as primitives and structs
are simply copied and the cost depends on their size. Copying large
structs may be expensive.

Span

Similar to std::basic_string_view, C++20 introduces a new “view”
type that works with any container: std::span. This is very similar to
the Span and ReadOnlySpan types in C#. A ReadOnlySpan type is
unnecessary in C++ as const can be used to disable mutating
member functions and overloaded operators. Like
std::basic_string_view, a std::span also doesn’t “own” the
underlying memory that holds the contained values but rather
references it like a pointer would. Here’s the basic usage:

#include <vector>

#include

// Create a container

std::vector<int> v{ 1, 2, 3 };

// Create a span to view the container

std::span<int> s{ v };

// Use the span to get the contents of the container

for (int x : s)

{

 DebugLog(x); // 1 then 2 then 3

}

One benefit of std::span is that it abstracts the underlying collection
type in a similar way to using IEnumerable<T> in C#. It uses
templates to do this at compile-time rather than runtime and thus

avoids the overhead of interfaces’ virtual functions. Its non-explicit
constructor combined with C++’s implicit conversion allows for any
type of container to be passed to a function taking a std::span:

#include <vector>

#include

void Print(std::span<int> s)

{

 for (int x : s)

 {

 DebugLog(x);

 }

}

std::vector<int> v{ 1, 2, 3 };

Print(v); // 1 then 2 then 3

int a[] = { 1, 2, 3 };

Print(a); // 1 then 2 then 3

std::span is able to behave like a container because it contains all
the usual member functions: begin, end, size, front, back, etc. We
can call them directly or indirectly via features like the range-based
for loop above. There’s also an additional function to get a
std::span that views just a portion of an existing std::span:

#include <vector>

#include

std::vector<int> v{ 1, 2, 3, 4, 5 };

// A span covering the whole container

std::span<int> s{ v };

DebugLog(s.size()); // 5

for (int x : s)

{

 DebugLog(x); // 1, 2, 3, 4, 5

}

// A sub-span of the middle 3 elements

std::span<int> ss{ s.subspan(1, 3) };

DebugLog(ss.size()); // 3

for (int x : ss)

{

 DebugLog(x); // 2, 3, 4

}

Conclusion

The containers library is designed in such a way that containers are
very compatible with each other and with the C++ language itself.
They all have iterators that can be used directly or via range-based
for loops just like C# container types can be used with foreach
loops. They consistently handle errors with exceptions, just like C#
containers do, but often allow disabling those exceptions. The
std::span type provides an abstract view of any container just like
Span does. All in all, there’s a lot of similarity between C++ and C#.

Some divergence appears when we start to look at advanced
operations. Swapping the contents of containers is implemented very
efficiently in C++ via template specialization, which C# lacks.
Allocation customization is available in two forms, but unavailable in
C#. In-place construction of elements is only possible in C++ due to
the ability to “forward” constructor parameters and perform
“placement new” construction.

Finally, here’s a comparison table between each of the container
types in the two languages:

Container C++ C#

Dynamic Array vector List

Static Array array N/A

Bit Array bitset BitArray

Value Array valarray N/A

Double-Ended Queue deque N/A

Queue queue Queue

Container C++ C#

Stack stack Stack

Hash Map unordered_map Dictionary

Hash Multimap unordered_multimap N/A

Map map OrderedDictionary

Multimap multimap N/A

Hash Set unordered_set HashSet

Hash Multiset unordered_multiset N/A

Set set SortedSet

Multiset multiset N/A

Doubly-Linked List list LinkedList

Singly-Linked List forward_list N/A

48. Algorithms Library

Iterator

We’ve seen that containers each have an iterator class member
that’s used like IEnumerator in C#: to keep track of iterating over the
collection. The <iterator> header is the support library for these
types. Until C++17 deprecated it, there was a std::iterator base
class of all the containers’ iterator classes. This is now unnecessary
with language features like concepts. Specifically, the <iterator>
header provides a lot of concepts to define different kinds of
iterators. Here’s how they relate to each other:

“Tag” classes are available for most of these concepts. These are
empty structs that iterators and other tag classes derive from to form
an inheritance hierarchy that matches the concepts:

There are also concepts such as std::sortable, std::mergeable,
and std::permutable that are used as requirements for various
algorithms we’ll see shortly.

C# doesn’t have concepts and its IEnumerator interface doesn’t
have “tag” interfaces, so there’s really no equivalent of this.

Besides concepts, <iterator> provides a lot of iterator-related
utilities. This includes a lot of “adapter” classes that change the
behavior of iterators. For example, std::reverse_iterator has an
overloaded ++ operator that moves backward instead of forward:

#include <iterator>

#include <vector>

std::vector<int> v{ 1, 2, 3 };

// Adapt iterators to go backward instead of forward when

using ++

std::reverse_iterator<std::vector<int>::iterator> it{

v.end() };

std::reverse_iterator<std::vector<int>::iterator> end{

v.begin() };

while (it != end)

{

 DebugLog(*it); // 3 then 2 then 1

 ++it;

}

// Less verbose version using class template argument

deduction

for (std::reverse_iterator it{ v.end() };

 it != std::reverse_iterator{ v.begin() };

 ++it)

{

 DebugLog(*it); // 3 then 2 then 1

}

// Even less verbose version using rebgin() and rend()

for (auto it{ v.rbegin() }; it != v.rend(); ++it)

{

 DebugLog(*it); // 3 then 2 then 1

}

There’s also a std::back_insert_iterator that overloades the
assignment (=) operator to call push_back on a collection:

#include <iterator>

#include <vector>

// Empty collection

std::vector<int> v{};

// Create an iterator to insert into the std::vector

std::back_insert_iterator<std::vector<int>> it{ v };

// Insert three elements

it = 1;

it = 2;

it = 3;

for (int x : v)

{

 DebugLog(x); // 1 then 2 then 3

}

Some functions are also available for common operations on
iterators:

#include <iterator>

#include <vector>

std::vector<int> v{ 10, 20, 30, 40, 50 };

// Get the distance (how many iterations) between two

iterators

DebugLog(std::distance(v.begin(), v.end())); // 5

// Advance an iterator by a certain number of iterations

std::vector<int>::iterator it{ v.begin() };

std::advance(it, 2);

DebugLog(*it); // 30

// Get the next iterator

DebugLog(*std::next(it)); // 40

DebugLog(*std::prev(it)); // 20

There are also some utility functions for containers:

#include <iterator>

#include <vector>

std::vector<int> v{ 10, 20, 30, 40, 50 };

// Check if a container is empty

DebugLog(std::empty(v)); // false

// Get a pointer to a container's data

int* d{ std::data(v) };

DebugLog(*d); // 10

A bunch of overloaded operators are provided outside of any
particular iterator class to perform binary operations on iterators:

#include <iterator>

#include <vector>

std::vector<int> v{ 10, 20, 30, 40, 50 };

std::vector<int>::iterator itA{ v.begin() };

std::vector<int>::iterator itB{ v.end() };

// Subtraction is a synonym for std::distance

DebugLog(itB - itA); // 5

// Inequality and inequality operators compare iteration

position

DebugLog(itA == itB); // false

DebugLog(itA < itB); // true

Some of this iterator-agnostic functionality is provided by the
System.Linq.Enumerable class in C#. For example, Skip is very
similar to advance in that it advances an IEnumerator forward by a
given number of iterations.

Algorithm

The <algorithm> header provides a ton of functions that operate on
iterators, just as LINQ in C# provides generic algorithms that operate
on IEnumerable and IEnumerator. For example, std::all_of is the
equivalent of Enumerable.All:

#include <algorithm>

#include <vector>

std::vector<int> v{ 10, 20, 30, 40, 50 };

bool allEven = std::all_of(

 v.begin(), // Iterator to start at

 v.end(), // Iterator to stop at

 [](int x) { return (x % 2) == 0; }); // Predicate to

call with elements

DebugLog(allEven); // true

Right away we see a difference from LINQ: two iterators are passed
in instead of an IEnumerable with its single GetEnumerator method.
This makes it easy to operate on a subset of the container such as
the middle three elements of an array:

#include <algorithm>

#include <vector>

int v[]{ 10, 20, 30, 40, 50 };

bool allSmall = std::all_of(

 std::begin(v) + 1,

 std::begin(v) + 4,

 [](int x) { return x >= 20 && x <= 40; });

DebugLog(allSmall); // true

The same can be done in C#, but only by allocating new managed
class objects that implement the IEnumerable interface:

using System;

using System.Collections.Generic;

using System.Linq;

public class Program

{

 public static void Main()

 {

 int[] a = { 10, 20, 30, 40, 50 };

 // Skip allocates a class instance

 IEnumerable<int> skipped = a.Skip(1);

 // Take allocates a class instance

 IEnumerable<int> taken = skipped.Take(3);

 // Operates on only the middle three elements

 bool allSmall = taken.All(x => x >= 20 && x <=

40);

 Console.WriteLine(allSmall); // true

 }

}

LINQ is often avoided, such as in Unity games, due to the high
amount of managed allocation and eventual garbage collection
involved in creating so many IEnumerable class objects. The function
calls to these, and the IEnumerator objects they return, are all virtual
functions which run slower than non-virtual function calls. Additional
GC pressure may even be generated by “boxing” of IEnumerator
structs into managed objects.

C++ algorithms, in contrast, only create lightweight iterators that
aren’t garbage-collected, are never boxed, and don’t use virtual
functions. The result is that compilers often totally wipe out the
iterators and algorithms resulting in a “raw” loop. That “raw” loop
may even be optimized away if the contents of the collection are
known at compile time. For example, a command line program
version of the above returns allSmall as the exit code:

#include <algorithm>

#include <iterator>

int main()

{

 int v[]{ 10, 20, 30, 40, 50 };

 bool allSmall = std::all_of(

 std::begin(v) + 1,

 std::begin(v) + 4,

 [](int x) { return x >= 20 && x <= 40; });

 return allSmall;

}

GCC 10.3 with basic optimization (-O1) enabled compiles this to the
constant 1 (for true) on x86-64:

main:

 mov eax, 1

 ret

As with LINQ, C++ provides dozens of algorithm functions for many
common operations. Here’s a sampling of the non-modifying
algorithms:

#include <algorithm>

#include <vector>

std::vector<int> v1{ 10, 20, 30, 40, 50 };

std::vector<int> v2{ 10, 20, 35, 45, 55 };

auto isEven = [](int x) { return (x % 2) == 0; };

// Query the contents of a vector

DebugLog(std::any_of(v1.begin(), v1.begin(), isEven)); //

true

DebugLog(std::none_of(v1.begin(), v1.begin(), isEven));

// false

// Get a pair of iterators where the vectors diverge

auto mm{ std::mismatch(v1.begin(), v1.end(), v2.begin())

};

DebugLog(*mm.first, *mm.second); // 30, 35

// Get an iterator to the first matching element

auto firstEven{ std::find_if(v2.begin(), v2.end(),

isEven) };

DebugLog(*firstEven); // 10

// Get an iterator to the first matching element that

doesn't match

auto firstOdd{ std::find_if_not(v2.begin(), v2.end(),

isEven) };

DebugLog(*firstOdd); // 35

// Get an iterator to the first element of an element

sequence

auto seq{ std::search(v1.begin(), v1.end(), v2.begin(),

v2.begin() + 1) };

DebugLog(*seq); // 10

Here are some modifying algorithms:

#include <algorithm>

#include <vector>

#include <random>

std::vector<int> v{ 10, 20, 35, 45, 55 };

auto isEven = [](int x) { return (x % 2) == 0; };

auto print = [&]() {

 for (int x : v)

 {

 DebugLog(x);

 }

};

// Remove matching elements by shifting toward the front

// Returns an iterator just after the new end

auto end{ std::remove_if(v.begin(), v.end(), isEven) };

DebugLog(*end); // 45

print(); // 35, 45, 55

// Replace matching elements with a new value

std::replace_if(v.begin(), v.end(), [](int x) { return x

< 50; }, 50);

print(); // 50, 50, 55, 50, 55

// Rotate left by two elements

std::rotate(v.begin(), v.begin() + 2, v.end());

print(); // 55, 50, 55, 50, 50

// Randomly shuffle elements

// Note: random_shuffle() isn't thread-safe and is

deprecated since C++17

std::random_device rd{};

std::mt19937 gen{ rd() };

std::shuffle(v.begin(), v.end(), gen);

print(); // Some permutation of 55, 50, 55, 50, 50

// Assign a value to every element

std::fill(v.begin(), v.end(), 10);

print(); // 10, 10, 10, 10, 10

There are also algorithms related to sorting sequences:

#include <algorithm>

#include <vector>

std::vector<int> v{ 35, 45, 10, 20, 55 };

auto isEven = [](int x) { return (x % 2) == 0; };

auto print = [](auto& c) {

 for (int x : c)

 {

 DebugLog(x);

 }

};

// Check if a sequence is sorted

DebugLog(std::is_sorted(v.begin(), v.end())); // false

// Sort elements until an iterator is reached

std::partial_sort(v.begin(), v.begin() + 2, v.end());

print(v); // 10, 20, 45, 35, 55

DebugLog(std::is_sorted(v.begin(), v.end())); // false

// Sort the whole sequence

std::sort(v.begin(), v.end());

print(v); // 10, 20, 35, 45, 55

DebugLog(std::is_sorted(v.begin(), v.end())); // true

// Binary search a sorted sequence

DebugLog(std::binary_search(v.begin(), v.end(), 45)); //

true

// Merge two sorted sequences into a sorted sequence

std::vector<int> v2{ 15, 25, 40, 50 };

std::vector<int> v3{};

std::merge(

 v.begin(), v.end(), // First sequence

 v2.begin(), v2.end(), // Second sequence

 std::back_insert_iterator<std::vector<int>>{ v3 });

// Output iterator

print(v3); // 10, 15, 20, 25, 35, 40, 45, 55

// Check if a sorted sequence includes another sorted

sequence

// Inclusion doesn't need to be contiguous

bool inc{ std::includes(v3.begin(), v3.end(), v2.begin(),

v2.end()) };

DebugLog(inc); // true

And finally there are some query operations:

#include <algorithm>

#include <vector>

std::vector<int> v1{ 35, 45, 10, 20, 55 };

std::vector<int> v2{ 35, 45, 10, 15, 30 };

// Check if two sequences' elements are equal

DebugLog(std::equal(v1.begin(), v1.end(), v2.begin(),

v2.end())); // false

DebugLog(

 std::equal(

 v1.begin(), v1.begin() + 3,

 v2.begin(), v2.begin() + 3)); // true

// Find the min, max, and both of elements in a sequence

DebugLog(*std::min_element(v1.begin(), v1.end())); // 10

DebugLog(*std::max_element(v1.begin(), v1.end())); // 55

auto [minIt, maxIt] = std::minmax_element(v1.begin(),

v1.end());

DebugLog(*minIt, *maxIt); // 10, 55

// Single value versions don't operate on sequences

int a = 10;

int b = 20;

DebugLog(std::min(a, b)); // 10

DebugLog(std::max(a, b)); // 20

auto [minVal, maxVal] = std::minmax(a, b);

DebugLog(minVal, maxVal); // 10, 20

// Other single value functions

DebugLog(std::clamp(1000, 0, 100)); // 100

std::swap(a, b);

DebugLog(a, b); // 20, 10

All of these examples have used std::vector<int>, but it’s
important to know that these algorithms apply to any container type
with any element type as long as the requirements of the algorithm
are satisfied. This includes container and element types
implemented in the C++ Standard Library as well as container and
element types we create in our own code:

#include <algorithm>

// A custom enum and a function to get enumerator string

names

enum class Element { Earth, Water, Wind, Fire };

const char* GetName(Element e)

{

 switch (e)

 {

 case Element::Earth: return "Earth";

 case Element::Water: return "Water";

 case Element::Wind: return "Wind";

 case Element::Fire: return "Fire";

 default: return "";

 }

}

// A custom struct

struct PrimalElement

{

 Element Element;

 int Power;

};

// Forward-declare a class that holds an array of the

custom struct

class PrimalElementsArray;

// An iterator type for the custom struct

class PrimalElementIterator

{

 // Keep track of the current iteration position

 PrimalElement* Array;

 int Index;

public:

 PrimalElementIterator(PrimalElement* array, int

index)

 : Array(array)

 , Index(index)

 {

 }

 // Advance the iterator

 PrimalElementIterator& operator++()

 {

 Index++;

 return *this;

 }

 // Compare with another iterator

 bool operator==(const PrimalElementIterator& other)

 {

 return Array == other.Array && Index ==

other.Index;

 }

 // Dereference to get the current element

 PrimalElement& operator*()

 {

 return Array[Index];

 }

};

// A class that holds an array of the custom struct

class PrimalElementsArray

{

 PrimalElement Elements[4];

public:

 PrimalElementsArray()

 {

 Elements[0] = PrimalElement{ Element::Earth, 50

};

 Elements[1] = PrimalElement{ Element::Water, 20

};

 Elements[2] = PrimalElement{ Element::Wind, 10 };

 Elements[3] = PrimalElement{ Element::Fire, 75 };

 }

 // Get an iterator to the first element

 PrimalElementIterator begin()

 {

 return PrimalElementIterator{ Elements, 0 };

 }

 // Get an iterator to one past the last element

 PrimalElementIterator end()

 {

 return PrimalElementIterator{ Elements, 4 };

 }

};

// Create our custom array type

PrimalElementsArray pea{};

// Use std::find_if to find the PrimalElement with more

than 50 power

PrimalElementIterator found{

 std::find_if(

 pea.begin(),

 pea.end(),

 [](const PrimalElement& pe) { return pe.Power >

50; }) };

DebugLog(GetName((*found).Element), (*found).Power); //

Fire, 75

Numeric

Finally for this chapter, we’ll revisit the numbers library by looking at
<numeric>. It turns out that it has some number-specific generic
algorithms. Here’s a few of them:

#include <numeric>

#include <vector>

std::vector<int> v{};

v.resize(5);

auto print = [](auto& c) { for (int x : c) DebugLog(x);

};

// Initialize with sequential values starting at 10

std::iota(v.begin(), v.end(), 10);

print(v); // 10, 11, 12, 13, 14

// Sum the range starting at 100

DebugLog(std::accumulate(v.begin(), v.end(), 100)); //

160

// Sum in an arbitrary order

DebugLog(std::reduce(v.begin(), v.end(), 100)); // 160

// C++17: transform pairs of elements and then reduce in

an arbitrary order

// Equivalent to 1000000 + 10*10 + 11*10 + 12*10 + 13*10

+ 14*10

DebugLog(

 std::transform_reduce(

 v.begin(), v.end(), // Sequence

 1000000, // Initial value

 [](int a, int b) { return a + b; }, // Reduce

function

 [](int x) { return x*10; }) // Transform function

); // 1000600

// Output sums up to current iteration

std::vector<int> sums{};

std::partial_sum(

 v.begin(), v.begin() + 3, // Sequence

 std::back_insert_iterator{ sums }); // Output

iterator

print(sums); // 10, 21, 33

Conclusion

Both languages have a wide variety of generic algorithms but they
differ quite a bit in implementation. That ranges from the trivial
naming differences of enumerators and iterators to the giant
performance gulf between LINQ and C++ algorithm functions in
<algorithm> and <numeric>.

It’s hard to overstate just how many generic algorithms are available
in the C++ Standard Library. This is especially true when looking at
the huge number of permutations of each of these functions. It’s
common to see five or even ten overloads of these to customize for
a wide variety of parameters running the gamut from simple versions
to extremely generic and flexible versions. That’s another difference
with C# where LINQ functions typically have just one or two
overloads.

The design of the language, especially the very powerful support for
compile-time generic programming via templates, combines with the
iterator paradigm to enable all of this functionality on all of the many
container types but also all of the container types we might
implement in our own code to suit our own needs. We inherit the
same high level of optimization that C++ Standard Library types
receive, which gives us little excuse for writing a lot of “raw” loops.

49. Ranges and Parallel Algorithms' href

Library Layout and iosfwd

The I/O library subset of the broader C++ Standard Library contains
several header files that often #include each other. Here’s how
those relationships look:

I/O Library

The most basic usage of the I/O library is to #include <iosfwd>. This
header provides “forward” declarations of I/O types. These can then
be named, such as by pointer or reference types. They can’t be used
by value or by accessing any of their members. <iosfwd> really just
exists to speed up compilation when I/O types only need to be
named and their full definitions, which are slower to compile, aren’t
needed.

We’ll see all the types in <iosfwd> as we go through each of the
headers that #include it and then provide definitions.

ios

The <ios> header contains basic tools that the rest of the I/O library
uses. First up, there’s std::ios_base which serves as the abstract
base class of all the I/O “stream” classes. We’ll see what those
classes look like soon, but suffice to say a “stream” is an abstract
input and/or output that can be backed by a file, “standard output”, a
string, and so forth. It’s very similar to the C# Stream abstract base
class.

Here’s some of what std::ios_base provides:

#include <ios>

#include <locale>

void Goo(std::ios_base& base)

{

 // Get the flags that control formatting

 std::ios_base::fmtflags f{ base.flags() };

 DebugLog((f & std::ios_base::dec) != 0); // Maybe

true

 DebugLog((f & std::ios_base::hex) != 0); // Maybe

false

 DebugLog((f & std::ios_base::boolalpha) != 0); //

Maybe false

 // Set and unset a format flag

 base.setf(std::ios_base::boolalpha);

 DebugLog((base.flags() & std::ios_base::boolalpha) !=

0); // true

 base.unsetf(std::ios_base::boolalpha);

 DebugLog((base.flags() & std::ios_base::boolalpha) !=

0); // false

 // Set and get floating-point precision

 base.precision(2);

 DebugLog(base.precision()); // 2

 // Set and get the minimum number of characters that

some operations print

 base.width(10);

 DebugLog(base.width()); // 10

 // Set and get the locale

 base.imbue(std::locale{ "de-DE" });

 DebugLog(base.getloc().name()); // de-DE

 try

 {

 throw std::ios_base::failure{ "some I/O error" };

 }

 catch (const std::ios_base::failure& ex)

 {

 DebugLog(ex.what()); // some I/O error

 }

 // Ways of opening streams

 // These are bit flags to form a mask

 std::ios_base::openmode mode{

 std::ios_base::app | // Append

 std::ios_base::binary | // Binary

 std::ios_base::in | // Read

 std::ios_base::out | // Write

 std::ios_base::trunc | // Overwrite

 std::ios_base::ate // Open at end of stream

 };

 // Bit flags forming the state of a stream

 std::ios_base::iostate state{

 std::ios_base::goodbit | // No error

 std::ios_base::badbit | // Unrecoverable error

 std::ios_base::failbit | // Operation failed

(e.g. formatting failed)

 std::ios_base::eofbit // End of stream

 };

 // Directions to seek

 std::ios_base::seekdir dir = std::ios_base::beg; //

Beginning of stream

 dir = std::ios_base::end; // End of stream

 dir = std::ios_base::cur; // From the current

position

}

There’s also std::char_traits, which is a class template with static
functions that provide functionality for operations on particular kinds
of characters:

#include <ios>

// Single-character operations

DebugLog(std::char_traits<char>::eq('a', 'a')); // true

DebugLog(std::char_traits<char>::eof()); // -1

// Copy multiple characters

char buf[5];

std::char_traits<char>::copy(buf, "abcd", 4);

DebugLog(buf); // abcd

// Lexicographical comparison

DebugLog(std::char_traits<char>::compare("abcd", "efgh",

4)); // -1

std::fpos is then build on std::char_traits to represent a position
in a file. Usually we use the provided type aliases:

Type Alias Character Traits

std::streampos std::char_traits<char>

std::wstreampos std::char_traits<wchar_t>

std::u8streampos std::char_traits<char8_t>

std::u16streampos std::char_traits<char16_t>

Type Alias Character Traits

std::u32streampos std::char_traits<char32_t>

Finally, there are some free functions that set flags on std::ios_base
objects as an alternative to the setf member function:

#include <ios>

void Goo(std::ios_base& base)

{

 // Use strings like "true" or numbers like 1 for

bools

 std::boolalpha(base);

 std::noboolalpha(base);

 // Use uppercase or lowercase in hexadecimal numbers

and floats

 std::uppercase(base);

 std::nouppercase(base);

}

streambuf

The <streambuf> header provides just one class:
std::basic_streambuf. This is an abstract base class of a way to
input and output characters. It’s meant to have its virtual functions
overridden by derived classes in such a way that they implement the
actual reading and writing from the stream. This might mean access
to a network socket, file system, GPU memory, or any other place
that serialized data can be transmitted to and received from.

We don’t usually have a need to derive from this class. Instead, we
typically use derivations that are already provided by the C++
Standard Library. These include “standard output, “standard error,”
“standard input,” and access the file system. We’ll see these when
we look at <iostream> and <fstream>.

ostream and iostream

The <ostream> header provides output streams via the
std::basic_ostream class template. There are two aliases for this
that we typically use: std::ostream which aliases
std::basic_ostream<char> and std::wostream for wchar_t.

we need to pass a std::basic_streambuf to construct a
std::basic_ostream. This is also not commonly done. Instead, we
typically use an already-created std::basic_ostream object. The
<iostream> header provides a few pairs of these:

Global
Object Use C# Equivalent

std::cout Standard output of
char

Console.OpenStandardOutput

std::wcout Standard output of
wchar_t

Console.OpenStandardOutput

std::clog Standard error of char Console.OpenStandardError

std::wclog Standard error of
wchar_t

Console.OpenStandardError

std::cerr
Unbuffered standard
error of char Console.OpenStandardError

std::wcerr
Unbuffered standard
error of wchar_t Console.OpenStandardError

Regardless of the object we choose to use, we have a few options
for outputting data. The most typical is “formatted output” via the
overloaded << operator. This leads to the canonical “Hello, world!”
application for C++:

#include <iostream>

int main()

{

 std::cout << "Hello, world!\n";

}

The << operator is overloaded with all of the primitive types like long,
float, char, char* (a C-string), and bool. It’s common for us to add
an overload for our own types so we can format them for output:

#include <iostream>

// Our own type

struct Point2

{

 float X;

 float Y;

};

// Overload basic_ostream's << operator for our own type

template <typename TChar>

std::basic_ostream<TChar>& operator<<(

 std::basic_ostream<TChar>& stream,

 const Point2& point)

{

 // Use the overloaded << operator with already-

supported primitive types

 stream << '(' << point.X << ", " << point.Y << ')';

 // Return the stream for operator chaining

 return stream;

}

// Print our own type to standard output

Point2 p{ 2, 4 };

std::cout << p << '\n'; // (2, 4)\n

At long last, we can write the DebugLog function! With the support of
variadic templates, template specialization, and type-aware
formatted output to a std::basic_ostream, it’s actually only about 9
lines of code:

#include <iostream>

// Logging nothing just prints an empty line

void DebugLog()

{

 std::cout << '\n';

}

// Logging one value. This is the base case.

template <typename T>

void DebugLog(const T& val)

{

 std::cout << val << '\n';

}

// Logging two or more values

template <typename TFirst, typename TSecond, typename

...TRemain>

void DebugLog(const TFirst& first, const TSecond& second,

TRemain... remain)

{

 // Log the first value

 std::cout << first << ", ";

 // Recurse with the second value and any remaining

values

 DebugLog(second, remain...);

}

// Call the first function to print an empty line

DebugLog(); // \n

// Call the second function to print a single value

DebugLog('a'); // a\n

// Call the third function

// It prints "b, "

// It recurses with (1, true, "hello")

// It prints "1, "

// It recurses with (true, "hello")

// It prints "true, "

// It calls the second function with "hello"

// The second function prints "hello\n"

DebugLog('b', 1, true, "hello"); // b, 1, true, hello\n

Besides formatted output, there’s also unformatted output for when
we want to write raw data to an output stream. This data can be
either a single character or a block of characters. We typically use
this for outputting binary data while formatted output is typically used
for strings and other human-readable data:

#include <iostream>

// Unformatted output of a single character

std::cout.put('a');

// Unformatted output of a block of characters

char buf[8];

for (int i = 0; i < sizeof(buf); ++i)

{

 buf[i] = 'a' + i;

}

std::cout.write(buf, sizeof(buf)); // abcdefgh

There are also functions for querying and controlling the position in
the output stream. This has no meaning for std::cout, but makes
sense for other output streams such as to files:

#include <iostream>

// Write a null byte at a position then restore the

position

void WriteNullAt(std::ostream& stream, std::streampos

pos)

{

 // Get stream position

 std::streampos oldPos{ stream.tellp() };

 // Seek stream position

 stream.seekp(pos);

 // Write the null byte

 stream.put(0);

 // Seek the stream back

 stream.seekp(oldPos);

}

An output stream that’s buffered can also be explicitly flushed using,
well, flush:

std::cout.flush();

<ostream> also provides a few “manipulator” functions. These are
functions that, when passed to << for formatted output, are called
with the stream to determine what to output. We typically use them
like this:

#include <iostream>

// endl prints a "\n" character then calls flush()

std::cout << "Hello, world!" << std::endl;

// ends prints a null character, i.e. the value 0

std::cout << "Hello, world!" << std::ends;

istream

The <istream> header provides the opposite of <ostream>: support
for input streams. The std::basic_istream class and its
std::istream and std::wistream aliases make this possible. There’s
also a std::basic_iostream for streams that can input and output
along with std::iostream and std::wiostream aliases. The
<iostream> header provides std::cin and std::wcin global objects
to read from “standard input.”

As with output, we have both “formatted” and “unformatted” reading
options. The “formatted” option enables the classic command line
application to implement a basic calculator using the overloaded >>
operator:

#include <iostream>

int main()

{

 std::cout << "Enter x:" << std::endl;

 int x;

 std::cin >> x;

 std::cout << "Enter y:" << std::endl;

 int y;

 std::cin >> y;

 std::cout << "x + y is " << (x+y) << std::endl;

}

Entering in some test values when prompted, we get the following
output:

Enter x:

2

Enter y:

4

x + y is 6

We also have several options for unformatted input:

#include <iostream>

// Read 3 characters then print them

char buf[4] = { 0 };

std::cin.read(buf, 3); // Enter "abc"

DebugLog(buf); // abc

//// Read 1 character and ignore it

std::cin.ignore(1);

// Read until a character is found or the end of the

buffer is hit

std::cin.getline(buf, sizeof(buf), ';'); // Enter "ab;c"

DebugLog(buf); // ab

std::cin.getline(buf, sizeof(buf), ';'); // Enter

"abcdefg"

DebugLog(buf); // abc

// Put a character into the input stream

std::cin.putback('a');

std::cin.read(buf, 1);

DebugLog(buf); // a

iomanip

The <iomanip> header is full of “manipulator” functions that we can
pass to formatted read and write operations. Here’s a sampling of
the options:

#include <iomanip>

#include <iostream>

#include <numbers>

using namespace std;

// Output 255 as hexadecimal

cout << setbase(16) << 255 << endl; // ff

// Output pi with 3 digits of precision (whole and

fractional)

cout << setprecision(3) << numbers::pi << endl; // 3.14

// Set the width of the output and how it's filled.

Useful for columns.

auto row = [](auto num, auto name, char fill = ' ') {

 cout << '|' << setw(10) << setfill(fill) << name <<

'|';

 cout << setw(10) << setfill(fill) << num << '|' <<

endl;

};

row("Number", "Name");

row('-', '-', '-');

row(1, "One");

row(2, "Two");

// Prints:

// | Number| Name|

// |----------|----------|

// | 1| One|

// | 2| Two|

// Output cents as US Dollars

cout.imbue(locale("en_US"));

cout << std::showbase << put_money(250) << endl; // $2.50

fstream

The <fstream> header has facilities for file system I/O. At the lowest
level, we have std::basic_filebuf which is a
std::basic_streambuf that we can use for raw file system access.
More typically, we use the std::basic_ifstream,
std::basic_ofstream, and std::basic_fstream classes for input,
output, and both. Aliases such as std::fstream are provided and
most commonly seen. These are the rough equivalent of FileStream
in C#:

#include <fstream>

void Foo()

{

 // Open the file for writing

 std::fstream stream{ "/path/to/file",

std::ios_base::out };

 // Formatted write to the file, including a flush via

endl

 stream << "hello" << std::endl;

} // fstream's destructor closes the file

As a derivative of basic_iostream, basic_fstream inherits all of its
functionality. This includes the formatted and unformatted I/O
functions such as the overloaded << operator seen above. Besides
this, a few file-specific member functions are on offer:

#include <fstream>

void Foo()

{

 // Open the file for writing

 std::fstream stream{ "/path/to/file",

std::ios_base::out };

 // Check if the file is open

 DebugLog(stream.is_open()); // true

 // Explicitly close the file without waiting for the

destructor

 stream.close();

 DebugLog(stream.is_open()); // false

 // Explicitly open a file without creating a new

stream

 stream.open("/path/to/other/file",

std::ios_base::out);

} // fstream's destructor closes any open file

sstream

As C# has StringBuilder, C++ has std::basic_ostringstream in
the <sstream> header. This class template, typically aliased as
std::ostringstream, allows writing to a string via the stream API:

#include <sstream>

// Create a stream for an empty string

std::ostringstream stream{};

// Formatted writing

stream << "Hello" << 123;

// Unformatted writing

stream.write("Goodbye", 8);

// Get a string for what was written

std::string str{ stream.str() };

DebugLog(str); // Hello123Goodbye

There’s also an input version that reads from strings:

#include <sstream>

// Create a stream for a string

std::istringstream stream{ "Hello 123Goodbye" };

// Formatted reading

std::string str;

int num;

stream >> str >> num;

DebugLog(str); // Hello

DebugLog(num); // 123

// Unformatted reading

char buf[8] = { 0 };

stream.read(buf, 8);

DebugLog(buf); // Goodbye

And there’s a combined std::stringstream that can both read and
write:

#include <sstream>

// Create a stream for an empty string

std::stringstream stream{};

// Formatted writing

stream << "Hello 123";

// Change read position to the beginning

stream.seekg(std::ios_base::beg, 0);

// Formatted reading

std::string str;

int num;

stream >> str >> num;

DebugLog(str); // Hello

DebugLog(num); // 123

syncstream

The final header of the I/O library was introduced with C++20:
<syncstream>. It provides std:: basic_syncbuf and
std::basic_osyncstream to synchronize the writing to a stream from
multiple threads. One motivating example is printing logs to standard
output. Consider how this works without synchronization:

#include <iostream>

#include <thread>

#include <chrono>

#include <functional>

// Prints "helloworld" to standard output 100 times

void Print(std::ostream& stream)

{

 for (int i = 0; i < 100; ++i)

 {

 stream << "helloworld" << std::endl;

std::this_thread::sleep_for(std::chrono::microseconds{ 1

});

 }

}

// Spawn a thread to print

std::jthread t{ Print, std::ref(std::cout) };

// Print on the main thread while the thread is running

Print(std::cout);

The exact output depends on OS scheduling, but this is likely to
produce errors due to contention for the output stream and its
internal buffer:

helloworld

helloworld

helloworldhelloworld

helloworld

helloworld

helloworld

helloworld

Here one of the threads printed helloworld but the other thread
interrupted to print helloworld\n before the first thread could print its
\n character. When the first thread resumed execution, it printed that
\n resulting in two \n in a row: \n\n.

To avoid this problem, or any contention due to multi-threaded
writing to a shared stream, we can use std::basic_osyncstream or
its std::osyncstream alias to synchronize the writes:

#include <syncstream>

#include <iostream>

#include <thread>

#include <chrono>

#include <functional>

void Print(std::ostream& stream)

{

 for (int i = 0; i < 100; ++i)

 {

 stream << "helloworld" << std::endl;

std::this_thread::sleep_for(std::chrono::microseconds{ 1

});

 }

}

// Create a synchronized stream backed by std::cout

std::osyncstream out{ std::cout };

// Print to the synchronized stream

std::jthread t{ Print, std::ref(out) };

Print(std::cout);

Conclusion

The C++ “I/O streams” library is far more powerful than basic
functionality like printf found in the C Standard Library. It’s not
nearly as error-prone since it makes use of the C++ type system
rather than manually-entered “format strings.” It’s far more extensible
since we can write our own format functions, manipulator functions,
and stream types to read and write from whatever kind of device we
encounter.

Compared to C#, its “unformatted” options are similar to byte-based
options such as we find in the base Stream class. Its formatted
options are similar to what we find in classes like TextReader and
TextWriter except adapters like these aren’t required in C++. On the
whole, the two libraries provide comparable functionality and even
share the “stream” abstraction and terminology.

Perhaps the largest difference is in extensibility where C++ allows us
to write our own types directly to a stream while C# typically requires
us to allocate a String object from our ToString function. The
addition of std::osyncstream in C++20 is also a nice addition as it
saves us from multi-threaded synchronization of stream writes
regardless of language.

50. I/O Library

Library Layout and iosfwd

The I/O library subset of the broader C++ Standard Library contains
several header files that often #include each other. Here’s how
those relationships look:

I/O Library

The most basic usage of the I/O library is to #include <iosfwd>. This
header provides “forward” declarations of I/O types. These can then
be named, such as by pointer or reference types. They can’t be used
by value or by accessing any of their members. <iosfwd> really just
exists to speed up compilation when I/O types only need to be
named and their full definitions, which are slower to compile, aren’t
needed.

We’ll see all the types in <iosfwd> as we go through each of the
headers that #include it and then provide definitions.

ios

The <ios> header contains basic tools that the rest of the I/O library
uses. First up, there’s std::ios_base which serves as the abstract
base class of all the I/O “stream” classes. We’ll see what those
classes look like soon, but suffice to say a “stream” is an abstract
input and/or output that can be backed by a file, “standard output”, a
string, and so forth. It’s very similar to the C# Stream abstract base
class.

Here’s some of what std::ios_base provides:

#include <ios>

#include <locale>

void Goo(std::ios_base& base)

{

 // Get the flags that control formatting

 std::ios_base::fmtflags f{ base.flags() };

 DebugLog((f & std::ios_base::dec) != 0); // Maybe

true

 DebugLog((f & std::ios_base::hex) != 0); // Maybe

false

 DebugLog((f & std::ios_base::boolalpha) != 0); //

Maybe false

 // Set and unset a format flag

 base.setf(std::ios_base::boolalpha);

 DebugLog((base.flags() & std::ios_base::boolalpha) !=

0); // true

 base.unsetf(std::ios_base::boolalpha);

 DebugLog((base.flags() & std::ios_base::boolalpha) !=

0); // false

 // Set and get floating-point precision

 base.precision(2);

 DebugLog(base.precision()); // 2

 // Set and get the minimum number of characters that

some operations print

 base.width(10);

 DebugLog(base.width()); // 10

 // Set and get the locale

 base.imbue(std::locale{ "de-DE" });

 DebugLog(base.getloc().name()); // de-DE

 try

 {

 throw std::ios_base::failure{ "some I/O error" };

 }

 catch (const std::ios_base::failure& ex)

 {

 DebugLog(ex.what()); // some I/O error

 }

 // Ways of opening streams

 // These are bit flags to form a mask

 std::ios_base::openmode mode{

 std::ios_base::app | // Append

 std::ios_base::binary | // Binary

 std::ios_base::in | // Read

 std::ios_base::out | // Write

 std::ios_base::trunc | // Overwrite

 std::ios_base::ate // Open at end of stream

 };

 // Bit flags forming the state of a stream

 std::ios_base::iostate state{

 std::ios_base::goodbit | // No error

 std::ios_base::badbit | // Unrecoverable error

 std::ios_base::failbit | // Operation failed

(e.g. formatting failed)

 std::ios_base::eofbit // End of stream

 };

 // Directions to seek

 std::ios_base::seekdir dir = std::ios_base::beg; //

Beginning of stream

 dir = std::ios_base::end; // End of stream

 dir = std::ios_base::cur; // From the current

position

}

There’s also std::char_traits, which is a class template with static
functions that provide functionality for operations on particular kinds
of characters:

#include <ios>

// Single-character operations

DebugLog(std::char_traits<char>::eq('a', 'a')); // true

DebugLog(std::char_traits<char>::eof()); // -1

// Copy multiple characters

char buf[5];

std::char_traits<char>::copy(buf, "abcd", 4);

DebugLog(buf); // abcd

// Lexicographical comparison

DebugLog(std::char_traits<char>::compare("abcd", "efgh",

4)); // -1

std::fpos is then build on std::char_traits to represent a position
in a file. Usually we use the provided type aliases:

Type Alias Character Traits

std::streampos std::char_traits<char>

std::wstreampos std::char_traits<wchar_t>

std::u8streampos std::char_traits<char8_t>

std::u16streampos std::char_traits<char16_t>

Type Alias Character Traits

std::u32streampos std::char_traits<char32_t>

Finally, there are some free functions that set flags on std::ios_base
objects as an alternative to the setf member function:

#include <ios>

void Goo(std::ios_base& base)

{

 // Use strings like "true" or numbers like 1 for

bools

 std::boolalpha(base);

 std::noboolalpha(base);

 // Use uppercase or lowercase in hexadecimal numbers

and floats

 std::uppercase(base);

 std::nouppercase(base);

}

streambuf

The <streambuf> header provides just one class:
std::basic_streambuf. This is an abstract base class of a way to
input and output characters. It’s meant to have its virtual functions
overridden by derived classes in such a way that they implement the
actual reading and writing from the stream. This might mean access
to a network socket, file system, GPU memory, or any other place
that serialized data can be transmitted to and received from.

We don’t usually have a need to derive from this class. Instead, we
typically use derivations that are already provided by the C++
Standard Library. These include “standard output, “standard error,”
“standard input,” and access the file system. We’ll see these when
we look at <iostream> and <fstream>.

ostream and iostream

The <ostream> header provides output streams via the
std::basic_ostream class template. There are two aliases for this
that we typically use: std::ostream which aliases
std::basic_ostream<char> and std::wostream for wchar_t.

we need to pass a std::basic_streambuf to construct a
std::basic_ostream. This is also not commonly done. Instead, we
typically use an already-created std::basic_ostream object. The
<iostream> header provides a few pairs of these:

Global
Object Use C# Equivalent

std::cout Standard output of
char

Console.OpenStandardOutput

std::wcout Standard output of
wchar_t

Console.OpenStandardOutput

std::clog Standard error of char Console.OpenStandardError

std::wclog Standard error of
wchar_t

Console.OpenStandardError

std::cerr
Unbuffered standard
error of char Console.OpenStandardError

std::wcerr
Unbuffered standard
error of wchar_t Console.OpenStandardError

Regardless of the object we choose to use, we have a few options
for outputting data. The most typical is “formatted output” via the
overloaded << operator. This leads to the canonical “Hello, world!”
application for C++:

#include <iostream>

int main()

{

 std::cout << "Hello, world!\n";

}

The << operator is overloaded with all of the primitive types like long,
float, char, char* (a C-string), and bool. It’s common for us to add
an overload for our own types so we can format them for output:

#include <iostream>

// Our own type

struct Point2

{

 float X;

 float Y;

};

// Overload basic_ostream's << operator for our own type

template <typename TChar>

std::basic_ostream<TChar>& operator<<(

 std::basic_ostream<TChar>& stream,

 const Point2& point)

{

 // Use the overloaded << operator with already-

supported primitive types

 stream << '(' << point.X << ", " << point.Y << ')';

 // Return the stream for operator chaining

 return stream;

}

// Print our own type to standard output

Point2 p{ 2, 4 };

std::cout << p << '\n'; // (2, 4)\n

At long last, we can write the DebugLog function! With the support of
variadic templates, template specialization, and type-aware
formatted output to a std::basic_ostream, it’s actually only about 9
lines of code:

#include <iostream>

// Logging nothing just prints an empty line

void DebugLog()

{

 std::cout << '\n';

}

// Logging one value. This is the base case.

template <typename T>

void DebugLog(const T& val)

{

 std::cout << val << '\n';

}

// Logging two or more values

template <typename TFirst, typename TSecond, typename

...TRemain>

void DebugLog(const TFirst& first, const TSecond& second,

TRemain... remain)

{

 // Log the first value

 std::cout << first << ", ";

 // Recurse with the second value and any remaining

values

 DebugLog(second, remain...);

}

// Call the first function to print an empty line

DebugLog(); // \n

// Call the second function to print a single value

DebugLog('a'); // a\n

// Call the third function

// It prints "b, "

// It recurses with (1, true, "hello")

// It prints "1, "

// It recurses with (true, "hello")

// It prints "true, "

// It calls the second function with "hello"

// The second function prints "hello\n"

DebugLog('b', 1, true, "hello"); // b, 1, true, hello\n

Besides formatted output, there’s also unformatted output for when
we want to write raw data to an output stream. This data can be
either a single character or a block of characters. We typically use
this for outputting binary data while formatted output is typically used
for strings and other human-readable data:

#include <iostream>

// Unformatted output of a single character

std::cout.put('a');

// Unformatted output of a block of characters

char buf[8];

for (int i = 0; i < sizeof(buf); ++i)

{

 buf[i] = 'a' + i;

}

std::cout.write(buf, sizeof(buf)); // abcdefgh

There are also functions for querying and controlling the position in
the output stream. This has no meaning for std::cout, but makes
sense for other output streams such as to files:

#include <iostream>

// Write a null byte at a position then restore the

position

void WriteNullAt(std::ostream& stream, std::streampos

pos)

{

 // Get stream position

 std::streampos oldPos{ stream.tellp() };

 // Seek stream position

 stream.seekp(pos);

 // Write the null byte

 stream.put(0);

 // Seek the stream back

 stream.seekp(oldPos);

}

An output stream that’s buffered can also be explicitly flushed using,
well, flush:

std::cout.flush();

<ostream> also provides a few “manipulator” functions. These are
functions that, when passed to << for formatted output, are called
with the stream to determine what to output. We typically use them
like this:

#include <iostream>

// endl prints a "\n" character then calls flush()

std::cout << "Hello, world!" << std::endl;

// ends prints a null character, i.e. the value 0

std::cout << "Hello, world!" << std::ends;

istream

The <istream> header provides the opposite of <ostream>: support
for input streams. The std::basic_istream class and its
std::istream and std::wistream aliases make this possible. There’s
also a std::basic_iostream for streams that can input and output
along with std::iostream and std::wiostream aliases. The
<iostream> header provides std::cin and std::wcin global objects
to read from “standard input.”

As with output, we have both “formatted” and “unformatted” reading
options. The “formatted” option enables the classic command line
application to implement a basic calculator using the overloaded >>
operator:

#include <iostream>

int main()

{

 std::cout << "Enter x:" << std::endl;

 int x;

 std::cin >> x;

 std::cout << "Enter y:" << std::endl;

 int y;

 std::cin >> y;

 std::cout << "x + y is " << (x+y) << std::endl;

}

Entering in some test values when prompted, we get the following
output:

Enter x:

2

Enter y:

4

x + y is 6

We also have several options for unformatted input:

#include <iostream>

// Read 3 characters then print them

char buf[4] = { 0 };

std::cin.read(buf, 3); // Enter "abc"

DebugLog(buf); // abc

//// Read 1 character and ignore it

std::cin.ignore(1);

// Read until a character is found or the end of the

buffer is hit

std::cin.getline(buf, sizeof(buf), ';'); // Enter "ab;c"

DebugLog(buf); // ab

std::cin.getline(buf, sizeof(buf), ';'); // Enter

"abcdefg"

DebugLog(buf); // abc

// Put a character into the input stream

std::cin.putback('a');

std::cin.read(buf, 1);

DebugLog(buf); // a

iomanip

The <iomanip> header is full of “manipulator” functions that we can
pass to formatted read and write operations. Here’s a sampling of
the options:

#include <iomanip>

#include <iostream>

#include <numbers>

using namespace std;

// Output 255 as hexadecimal

cout << setbase(16) << 255 << endl; // ff

// Output pi with 3 digits of precision (whole and

fractional)

cout << setprecision(3) << numbers::pi << endl; // 3.14

// Set the width of the output and how it's filled.

Useful for columns.

auto row = [](auto num, auto name, char fill = ' ') {

 cout << '|' << setw(10) << setfill(fill) << name <<

'|';

 cout << setw(10) << setfill(fill) << num << '|' <<

endl;

};

row("Number", "Name");

row('-', '-', '-');

row(1, "One");

row(2, "Two");

// Prints:

// | Number| Name|

// |----------|----------|

// | 1| One|

// | 2| Two|

// Output cents as US Dollars

cout.imbue(locale("en_US"));

cout << std::showbase << put_money(250) << endl; // $2.50

fstream

The <fstream> header has facilities for file system I/O. At the lowest
level, we have std::basic_filebuf which is a
std::basic_streambuf that we can use for raw file system access.
More typically, we use the std::basic_ifstream,
std::basic_ofstream, and std::basic_fstream classes for input,
output, and both. Aliases such as std::fstream are provided and
most commonly seen. These are the rough equivalent of FileStream
in C#:

#include <fstream>

void Foo()

{

 // Open the file for writing

 std::fstream stream{ "/path/to/file",

std::ios_base::out };

 // Formatted write to the file, including a flush via

endl

 stream << "hello" << std::endl;

} // fstream's destructor closes the file

As a derivative of basic_iostream, basic_fstream inherits all of its
functionality. This includes the formatted and unformatted I/O
functions such as the overloaded << operator seen above. Besides
this, a few file-specific member functions are on offer:

#include <fstream>

void Foo()

{

 // Open the file for writing

 std::fstream stream{ "/path/to/file",

std::ios_base::out };

 // Check if the file is open

 DebugLog(stream.is_open()); // true

 // Explicitly close the file without waiting for the

destructor

 stream.close();

 DebugLog(stream.is_open()); // false

 // Explicitly open a file without creating a new

stream

 stream.open("/path/to/other/file",

std::ios_base::out);

} // fstream's destructor closes any open file

sstream

As C# has StringBuilder, C++ has std::basic_ostringstream in
the <sstream> header. This class template, typically aliased as
std::ostringstream, allows writing to a string via the stream API:

#include <sstream>

// Create a stream for an empty string

std::ostringstream stream{};

// Formatted writing

stream << "Hello" << 123;

// Unformatted writing

stream.write("Goodbye", 8);

// Get a string for what was written

std::string str{ stream.str() };

DebugLog(str); // Hello123Goodbye

There’s also an input version that reads from strings:

#include <sstream>

// Create a stream for a string

std::istringstream stream{ "Hello 123Goodbye" };

// Formatted reading

std::string str;

int num;

stream >> str >> num;

DebugLog(str); // Hello

DebugLog(num); // 123

// Unformatted reading

char buf[8] = { 0 };

stream.read(buf, 8);

DebugLog(buf); // Goodbye

And there’s a combined std::stringstream that can both read and
write:

#include <sstream>

// Create a stream for an empty string

std::stringstream stream{};

// Formatted writing

stream << "Hello 123";

// Change read position to the beginning

stream.seekg(std::ios_base::beg, 0);

// Formatted reading

std::string str;

int num;

stream >> str >> num;

DebugLog(str); // Hello

DebugLog(num); // 123

syncstream

The final header of the I/O library was introduced with C++20:
<syncstream>. It provides std:: basic_syncbuf and
std::basic_osyncstream to synchronize the writing to a stream from
multiple threads. One motivating example is printing logs to standard
output. Consider how this works without synchronization:

#include <iostream>

#include <thread>

#include <chrono>

#include <functional>

// Prints "helloworld" to standard output 100 times

void Print(std::ostream& stream)

{

 for (int i = 0; i < 100; ++i)

 {

 stream << "helloworld" << std::endl;

std::this_thread::sleep_for(std::chrono::microseconds{ 1

});

 }

}

// Spawn a thread to print

std::jthread t{ Print, std::ref(std::cout) };

// Print on the main thread while the thread is running

Print(std::cout);

The exact output depends on OS scheduling, but this is likely to
produce errors due to contention for the output stream and its
internal buffer:

helloworld

helloworld

helloworldhelloworld

helloworld

helloworld

helloworld

helloworld

Here one of the threads printed helloworld but the other thread
interrupted to print helloworld\n before the first thread could print its
\n character. When the first thread resumed execution, it printed that
\n resulting in two \n in a row: \n\n.

To avoid this problem, or any contention due to multi-threaded
writing to a shared stream, we can use std::basic_osyncstream or
its std::osyncstream alias to synchronize the writes:

#include <syncstream>

#include <iostream>

#include <thread>

#include <chrono>

#include <functional>

void Print(std::ostream& stream)

{

 for (int i = 0; i < 100; ++i)

 {

 stream << "helloworld" << std::endl;

std::this_thread::sleep_for(std::chrono::microseconds{ 1

});

 }

}

// Create a synchronized stream backed by std::cout

std::osyncstream out{ std::cout };

// Print to the synchronized stream

std::jthread t{ Print, std::ref(out) };

Print(std::cout);

Conclusion

The C++ “I/O streams” library is far more powerful than basic
functionality like printf found in the C Standard Library. It’s not
nearly as error-prone since it makes use of the C++ type system
rather than manually-entered “format strings.” It’s far more extensible
since we can write our own format functions, manipulator functions,
and stream types to read and write from whatever kind of device we
encounter.

Compared to C#, its “unformatted” options are similar to byte-based
options such as we find in the base Stream class. Its formatted
options are similar to what we find in classes like TextReader and
TextWriter except adapters like these aren’t required in C++. On the
whole, the two libraries provide comparable functionality and even
share the “stream” abstraction and terminology.

Perhaps the largest difference is in extensibility where C++ allows us
to write our own types directly to a stream while C# typically requires
us to allocate a String object from our ToString function. The
addition of std::osyncstream in C++20 is also a nice addition as it
saves us from multi-threaded synchronization of stream writes
regardless of language.

51. Missing Library Features

Overview

The .NET library for C# is truly gigantic. It covers an extremely wide-
ranging set of functionality for a programming language’s standard
library. Even other “batteries included” languages like Python and
Java have nowhere near as much functionality as .NET does. It
absolutely dwarfs the C++ Standard Library, which has historically
limited itself to truly core functionality that can be applied to virtually
any computing device, is extremely mature, and can be achieve
consensus in a large, diverse standards committee. .NET, being
controlled by Microsoft, includes a great many features that are
specific to Microsoft Windows, the platforms it happens to run on,
and the technologies it encourages using.

As a result of this, C# developers have a ton of general-purpose
tools such as for JSON serialization but also a ton of tools such as
access to GDI+ that will most likely not apply to any code we write.
We can ignore them, but it makes providing an implementation of
.NET on non-Windows platforms more difficult and therefore less
likely to be accomplished and available. .NET itself has fractured into
a collection of overlapping libraries which may or may not be
available on any given platform: .NET Framework, .NET Core, .NET
Compact Framework, .NET Micro Framework, Microsoft Silverlight,
Mono, and Unity. Some of these are deprecated and others have
been renamed but there are still broad gulfs between libraries like
.NET Core and Unity.

Like the C++ language itself, the C++ Standard Library is a standard.
There are various implementations of the standard, but they all have
approximately the same features. Variance between them is mostly
in the form of unspecified behavior such as exception message
strings and deviances from the standard such as adding or removing

some (usually relatively-minor) features. This is especially true in
newly-released standards such as C++20 at the time of writing.

In a way the comparison between the two languages’ standard
libraries is a bit apples-to-oranges, but in this chapter we’ll look at
some of the high-level sorts of functionality a C# developer using
one of the .NET libraries won’t find in the C++ Standard Library.

Cryptography

The System.Security.Cryptography namespace provides C#
programmers with access to many common cryptographic algorithms
including AES, RSA, and the SHA family. The System.Net.Security
namespace provides TLS and SSL.

The C++ Standard Library doesn’t have any cryptography
functionality built in, so we seek other libraries to provide the needed
functionality. Thankfully, we can make easy use of C libraries as well
as C++ libraries so we have many options. Here are a few of them:

Library Language License Crypto
Algorithms

TLS and
SSL

Botan C++ BSD Yes Yes

OpenSSL C Apache Yes Yes

Crypto++ C++ Boost Yes No

libsodium C ISC Yes No

https://botan.randombit.net/
https://www.openssl.org/
https://www.cryptopp.com/
https://doc.libsodium.org/

Compression

In C#, we use the System.IO.Compression to access compression
algorithms such as GZip and Deflate as well as ZIP archives. Again,
we turn to non-standard libraries when we need compression
functionality with C++. Here are a few:

Library Language License Algorithms

zlib C zlib GZip, Deflate

Zipper C++ MIT ZIP

LZ4 C BSD LZ4

LZMA SDK C and C++ Public Domain LZMA, LZMA2

https://zlib.net/
https://github.com/sebastiandev/zipper
https://lz4.github.io/lz4/
https://7-zip.org/sdk.html

Networking

System.Net provides access to low-level sockets and WebSockets
while sub-namespaces provide higher-level functionality. For
example, System.Net.Http provides HTTP functionality such as a
client: HttpClient.

Proposals have been made to add networking functionality to the
C++ Standard Library, but so far haven’t been accepted. While we
wait for standardization, we can make use of many existing libraries
including these:

Library Language Licence Protocols

Boost.Asio C++ Boost

TCP, UDP, ICMP, serial
ports, UNIX sockets,
Windows HANDLE, SSL (via
OpenSSL)

Boost.Beast C++ Boost

Via Boost.Asio and
OpenSSL: HTTP (client
and server), WebSocket
(client and server)

cpp-httplib C++ MIT HTTP (client and server)

WebSocket++ C++ BSD WebSocket

https://en.cppreference.com/w/cpp/experimental/networking
https://www.boost.org/doc/libs/1_76_0/doc/html/boost_asio.html
https://www.boost.org/doc/libs/1_76_0/libs/beast/doc/html/index.html
https://github.com/yhirose/cpp-httplib
https://www.zaphoyd.com/projects/websocketpp/

Graphical User Interfaces

.NET has built-in support for three Windows GUIs: GDI+ in System.Drawing, Windows Forms in
System.Windows.Forms, and Windows Presentation Foundation in System.Windows. While not
part of .NET, Microsoft makes Xamarin available for cross-platform GUI development on
Windows, macOS, Linux, Android, and iOS but not web browsers.

C++ has no built-in GUI support, but can access Windows Forms and Windows Presentation
Foundation via C++/CLI. Quite a few libraries are also available for cross-platform GUI
development:

Library Language Licence Windows macOS Linux Android iOS Web
Browser

Qt C++
LGPL,
GPL,
Commercial

Yes Yes Yes Yes Yes Yes

GTK+ C LGPL Yes Yes Yes

wxWidgets C++ wxWindows Yes Yes Yes

Dear
ImGui C++ MIT Yes Yes Yes Yes Yes Yes

https://docs.microsoft.com/en-us/xamarin/get-started/what-is-xamarin
https://docs.microsoft.com/en-us/cpp/dotnet/dotnet-programming-with-cpp-cli-visual-cpp
https://www.qt.io/
https://www.gtk.org/
https://www.wxwidgets.org/
https://www.dearimgui.org/

CPU Intrinsics

System.Runtime.Intrinsics and its sub-namespaces
System.Runtime.Intrinsics.X86 and
System.Runtime.Intrinsics.Arm contain “intrinsics” for x86 and
ARM CPUs. These are functions whose calls are translated by the
compiler directly into a named CPU instruction. They provide low-
level control without needing to resort to assembly code.

C++ doesn’t have standardized intrinsics, but they’re widely
available:

Microsoft Visual Studio
Intel Intrinsics Guide
GCC Builtins including intrinsics
ARM NEON Intrinsics

https://docs.microsoft.com/en-us/cpp/intrinsics/compiler-intrinsics
https://software.intel.com/sites/landingpage/IntrinsicsGuide
https://gcc.gnu.org/onlinedocs/gcc-11.1.0/gcc/Target-Builtins.html#Target-Builtins
https://developer.arm.com/architectures/instruction-sets/simd-isas/neon/intrinsics

JSON

The JSON format is supported directly by .NET in the
System.Text.Json namespace. The C++ Standard Library doesn’t
directly support this format or any others, so we instead make use of
libraries:

Library Language License

JSON for Modern C++ C++ MIT

RapidJSON C++ MIT

JsonCpp C++ MIT

Boost.JSON C++ Boost

https://json.nlohmann.me/
https://rapidjson.org/
https://github.com/open-source-parsers/jsoncpp
https://www.boost.org/doc/libs/1_76_0/libs/json/doc/html/index.html

Debugging

The System.Diagnostics namespace in .NET provides some useful
debugging features. For example, we can use Debugger.Break to
break an interactive debugger. There’s also the StackTrace class to
get stack traces, especially when we run into problems.

C++ doesn’t provide either of these in its Standard Library, but we
can still access them. To break an interactive debugger on Windows,
we #include <debugapi.h> and call the DebugBreak function. On
UNIX systems, we #include <signal.h> and call the raise function
with SIGTRAP as the argument.

Support for stack traces has been proposed for the Standard Library,
but we’ll have to wait until at least C++23 for it to be adopted. For
now, the Boost-licensed Boost.Stacktrace library that the Standard
Library proposal is based on is available to fill the gap.

https://docs.microsoft.com/en-us/windows/win32/api/debugapi/nf-debugapi-debugbreak
https://man7.org/linux/man-pages/man3/raise.3.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p0881r7.html
https://www.boost.org/doc/libs/1_76_0/doc/html/stacktrace.html

Database Clients

The System.Data goes as far as to build in support for particular
databases. System.Data.SqlClient is a client for Microsoft SQL
Server and System.Data.OracleClient is a client for Oracle
Database.

The C++ Standard Library never endorses particular software
products like these, so it has zero support for databases. Instead,
Database vendors typically provide a C++ client, connector, or driver:

Library Language License Database

ODBC Driver for Microsoft
SQL Server C Commercial

Microsof
SQL
Server

Oracle C++ Call Interface C+++ Commercial Oracle
Database

MySQL Connector C++ GPL or
Commercial MySQL

MongoDB Driver C++ Apache MongoDB

https://docs.microsoft.com/en-us/sql/connect/odbc/microsoft-odbc-driver-for-sql-server?view=sql-server-ver15
https://docs.oracle.com/en/database/oracle/oracle-database/19/lncpp/introduction-to-occi.html
https://dev.mysql.com/downloads/connector/cpp/
https://docs.mongodb.com/drivers/cxx/

Conclusion

The .NET family of standard libraries for C# often take a different
design approach to the C++ Standard Library. They’re much more
comfortable building in support for particular software such as Oracle
Database. They’ll add OS-specific functionality such as to build GDI+
user interfaces. They’ll also add CPU intrinsics that are specific to
particular processor architectures such as x86 and ARM.

The C++ Standard Library is designed in a more abstract way. It
doesn’t choose to support any particular database, OS, processor,
algorithm, or data format. We’ll simply have to look outside of the
standard if we want any functionality related to a concrete software
or hardware product.

The area of overlap between .NET and the C++ Standard Library
relates to general tools such as collections and file system access.
Sometimes the C++ Standard Library has more available here, such
as with its doubly-ended queue type. Other times .NET has more
available, such as with its ability to break an interactive debugger or
open a network socket. These tools could be added to the C++
Standard Library in the future, but for now we need to employ other
libraries to get access to them.

52. Idioms and Best Practices

Guides

There are several existing, popular guides that aim to impose
programming standards on C++ codebases for a variety of reasons.
These reasons range from trivialities such as formatting to
standardization of error-handling and outright bans on certain
language features. Additionally, many teams and organizations will
create their own in-house rules and possibly enforce them with tools
like ClangFormat.

Here are some of the most popular public guides:

C++ Core Guidelines: maintained by the original creator of C++
and a top C++ standards committee member for general-
purpose code rather than a particular industry, domain, or
product. The Guidelines Support Library (GSL) by Microsoft and
related tools in Visual Studio support these guidelines.
Google C++ Style Guide: used by Google for their massive C++
codebase spanning the web, mobile devices, and more.
Unreal Engine Coding Standard: a much more brief guide
focused specifically on C++ written for Unreal Engine games

There are strong disagreements between these guides and even
their scopes vary widely. This chapter is mostly about areas that
have some semblance of agreement in the broader community of
C++ developers. It’s not an attempt to create a new guide.

https://clang.llvm.org/docs/ClangFormat.html
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
https://github.com/Microsoft/GSL
https://docs.microsoft.com/en-us/cpp/code-quality/using-the-cpp-core-guidelines-checkers?view=msvc-160
https://google.github.io/styleguide/cppguide.html
https://docs.unrealengine.com/en-US/ProductionPipelines/DevelopmentSetup/CodingStandard/index.html

Use macros extremely rarely

Macros are evaluated at an early stage of compilation and
essentially operate as scope-unaware text-replacers that aren’t fully
compatible with either variables or functions. They’re notoriously
difficult to debug and even understand. While they’re essential to
implement assertions, there are very few other cases where they are
preferable to regular C++ code:

// Avoid

#define PI 3.14

// Encourage

const float PI = 3.14;

// Avoid

#define SQUARE(x) x * x

// Encourage

float Square(float x)

{

 return x * x;

}

Add include guards to every header

As of this writing, modules are not yet in common usage. While still
using the classic header file-based build system, every header file
should have “include guards” to prevent redundant definitions by
multiple #include directives:

// Avoid

struct Point2

{

 float X;

 float Y;

};

// Encourage

#ifndef POINT2_HPP

#define POINT2_HPP

struct Point2

{

 float X;

 float Y;

};

#endif

// Encourage (non-standard but widely-supported

alternative)

#pragma once

struct Point2

{

 float X;

 float Y;

};

Include dependencies directly instead of relying on
indirect includes

When one file uses code in another file, it should #include the file
declaring that code directly rather than relying on another header to
#include the desired code. This prevents compilation errors if the
middle header removes its #include.

////////

// Avoid

////////

// a.h

struct A {};

// b.h

#include "a.h"

struct B : A {};

// c.h

#include "b.h"

A a; // Not in b.h

////////////

// Encourage

////////////

// a.h

struct A {};

// b.h

#include "a.h"

struct B : A {};

// c.h

#include "a.h"

A a;

Don’t call virtual functions in constructors

Virtual functions rely on a table that’s initialized by the constructors
of the classes in an inheritance hierarchy. Calling virtual functions
before these are set up can result in crashes or calling the wrong
version of the function:

// Avoid

struct Parent

{

 Parent()

 {

 Foo();

 }

 virtual void Foo()

 {

 DebugLog("Parent");

 }

};

struct Child : Parent

{

 virtual void Foo() override

 {

 DebugLog("Child");

 }

};

Child c; // Prints "Parent" not "Child"!

// Encourage designs that do not require such calls

Don’t use variadic functions

Variadic functions aren’t type-safe, rely on error-prone macros, are
difficult to optimize, and often result in error-prone APIs. They should
be avoided in favor of techniques such as fold expressions or the
use of container types:

// Avoid

void DebugLog(int count, ...)

{

 va_list args;

 va_start(args, count);

 for (int i = 0; i < count; ++i)

 {

 const char* log = va_arg(args, const char*);

 std::cout << log << ", ";

 }

 va_end(args);

}

DebugLog(4, "foo", "bar", "baz"); // Whoops! 4 reads

beyond the last arg!

// Encourage

void DebugLog()

{

 std::cout << '\n';

}

template <typename T>

void DebugLog(const T& val)

{

 std::cout << val << '\n';

}

template <typename TFirst, typename TSecond, typename

...TRemain>

void DebugLog(const TFirst& first, const TSecond& second,

TRemain... remain)

{

 std::cout << first << ", ";

 DebugLog(second, remain...);

}

DebugLog("foo", "bar", "baz"); // No need for a count.

Can't get it wrong.

No naked new and delete

The new and delete operators to dynamically allocate memory
should be a rare sight. Instead, “owning” types such as containers
and smart pointers should call new in their constructors and delete in
their destructors to ensure that memory is always cleaned up:

// Avoid

struct Game

{

 Stats* stats;

 Game()

 : stats{new Stats()}

 {

 }

 ~Game()

 {

 delete stats;

 }

};

// Encourage

struct Game

{

 std::unique_ptr<Stats> stats;

 Game()

 : stats{std::make_unique<Stats>()}

 {

 }

};

// Avoid

struct FloatBuffer

{

 float* floats;

 FloatBuffer(int32_t count)

 : floats{new float[count]}

 {

 }

 ~FloatBuffer()

 {

 delete [] floats;

 }

};

// Encourage

struct FloatBuffer

{

 std::vector<float> floats;

 FloatBuffer(int32_t count)

 : floats{count}

 {

 }

};

Prefer range-based loops

The most common loop is from the beginning to the end of a
collection. To avoid mistakes and make this more terse, use a range-
based) for loop instead of the three-part for loop, a while loop, or a
do-while loop:

// Avoid

for (

 std::vector<float>::iterator it = floats.begin();

 it != floats.end();

 ++i)

{

 DebugLog(*it);

}

// Encourage

for (float f : floats)

{

 DebugLog(f);

}

Use scoped enums instead of unscoped enums

To avoid adding all the enumerators of an unscoped enum to the
surrounding scope, use a scoped enumeration:

// Avoid

enum Colors { Red, Green, Blue };

uint32_t Red = 0x00ff00ff; // Error: redefinition because

Red escaped the enum

// Encourage

enum class Colors { Red, Green, Blue };

uint32_t Red = 0x00ff00ff; // OK

Don’t breach namespaces in headers

When commonly using the members of a namespace, it can be
convenient to pull them out with using namespace. When this is done
in a header, the files that #include it have this decision forced on
them. This can lead to namespace collisions and confusion, so it
should be avoided.

// Avoid

using namespace std;

struct Name

{

 string First;

 string Last;

};

// Encourage

struct Name

{

 std::string First;

 std::string Last;

};

Make single-parameter constructors explicit

Constructors default to allowing implicit conversion, which can be
surprising and expensive. Use the explicit keyword to disallow this
behavior:

// Avoid

struct Buffer

{

 std::vector<float> floats;

 Buffer(int x)

 : floats{x}

 {

 }

};

void DoStuff(Buffer b)

{

}

DoStuff(1'000'000); // Allocates a Buffer of one million

floats!

// Encourage

struct Buffer

{

 std::vector<float> floats;

 explicit Buffer(int x)

 : floats{x}

 {

 }

};

void DoStuff(Buffer b)

{

}

DoStuff(1'000'000); // Compiler error

Don’t use C casts

C-style casts may just change the type but also might perform value
conversion. They’re hard to search for as they blend in with other
parentheses. Instead, use a named C++ cast for better control and
easier searching:

// Avoid

const float val = 5.5;

int x = (int)val; // Changes type, truncates, and removes

constness!

DebugLog(x);

// Encourage

const float val = 5.5;

int x = const_cast<int>(val); // Compiler error

DebugLog(x);

Use specific integer sizes

All the way back in the second chapter of the book, we learned that
the size guarantees for primitive types like long are very weak. They
should be avoided in favor of guaranteed sizes in <cstdint>:

// Avoid

long GetFileSize(const char* path)

{

 // Does this support files larger than 4 GB?

 // Depends on whether long is 32-bit or 64-bit

}

// Encourage

int64_t GetFileSize(const char* path)

{

 // Definitely supports large files

}

Use nullptr

NULL is an implementation-defined variable-like macro that even
requires a #include to use. It’s a null pointer constant, but of
unknown type and erroneously usable in arithmetic. In contrast
nullptr is not a macro or an integer, requires no header, and even
has its own type which can be used in overload resolution. It should
be used to represent null pointers:

// Avoid

int* p = NULL;

// Encourage

int* p = nullptr;

Follow the Rule of Zero

Most classes shouldn’t need any copy constructors, move
constructors, destructors, copy assignment operators, or move
assignment operators. Instead, their data members should take care
of these functions. This is called the “rule of zero” because no
special functions need to be added. It’s the simplest approach and
the hardest to implement incorrectly:

// Avoid

struct Player

{

 std::string Name;

 int32_t Score;

 Player(std::string name, int32_t score)

 : Name{ name }

 , Score{ score }

 {

 }

 Player(const Player& other)

 : Name{ other.Name }

 , Score{ other.Score }

 {

 }

 Player(Player&& other) noexcept

 : Name{ std::move(other.Name) }

 , Score{ std::move(other.Score) }

 {

 }

 virtual ~Player()

 {

 }

 Player& operator=(const Player& other)

 {

 Name = other.Name;

 Score = other.Score;

 return *this;

 }

 Player& operator==(Player&& other)

 {

 Name = std::move(other.Name);

 Score = std::move(other.Score);

 return *this;

 }

};

Player p{ "Jackson", 1000 };

// Encourage

struct Player

{

 std::string Name;

 int32_t Score;

};

Player p{ "Jackson", 1000 };

Follow the Rule of Five

In cases where the Rule of Zero can’t be followed and a special
function needs to be added, add all five of them to handle all the
ways that objects can be copied, moved, and destroyed:

// Avoid

struct File

{

 std::string Path;

 const char* Mode;

 FILE* Handle;

 File(std::string path, const char* mode)

 : Path{ path }

 , Mode{ mode }

 , Handle(fopen(path.c_str(), mode))

 {

 }

 File(const File& other)

 : Path{ other.Path }

 , Mode{ other.Mode }

 , Handle(fopen(other.Path.c_str(), other.Mode))

 {

 }

 virtual ~File()

 {

 if (Handle)

 {

 fclose(Handle);

 }

 }

 File& operator=(const File& other)

 {

 Path = other.Path;

 Mode = other.Mode;

 Handle = fopen(other.Path.c_str(), other.Mode);

 return *this;

 }

 // No move constructor or move assignment operator

 // Expensive copies will be required: more file open

and close operations!

};

// Encourage

struct File

{

 std::string Path;

 const char* Mode;

 FILE* Handle;

 File(std::string path, const char* mode)

 : Path{ path }

 , Mode{ mode }

 , Handle(fopen(path.c_str(), mode))

 {

 }

 File(const File& other)

 : Path{ other.Path }

 , Mode{ other.Mode }

 , Handle(fopen(other.Path.c_str(), other.Mode))

 {

 }

 File(File&& other) noexcept

 : Path{ std::move(other.Path) }

 , Mode{ other.Mode }

 , Handle(other.Handle)

 {

 other.Handle = nullptr;

 }

 virtual ~File()

 {

 if (Handle)

 {

 fclose(Handle);

 }

 }

 File& operator=(const File& other)

 {

 Path = other.Path;

 Mode = other.Mode;

 Handle = fopen(other.Path.c_str(), other.Mode);

 return *this;

 }

 File& operator==(File&& other)

 {

 Path = std::move(other.Path);

 Mode = other.Mode;

 Handle = other.Handle;

 other.Handle = nullptr;

 return *this;

 }

};

Avoid raw loops

Hand-implemented algorithms are error-prone and difficult to read.
Many common algorithms, and even parallelized versions, are
implemented in the algorithms library and ranges library for us and
can be used with a broad number of types. Readers of such code
encounter just a named algorithm which they’re likely already familiar
with rather than needing to interpret that from a possibly-complex
loop.

// Avoid

struct Player

{

 const char* Name;

 int NumPoints;

};

void Avoid(const std::vector<Player>& players)

{

 using It =

std::reverse_iterator<std::vector<Player>::const_iterator

>;

 for (It it = players.rbegin(); it != players.rend();

++it)

 {

 const Player& player = *it;

 if (player.NumPoints > 25)

 {

 Player copy = player;

 copy.NumPoints--;

 DebugLog(copy.Name, copy.NumPoints);

 }

 }

}

// Encourage

struct Player

{

 const char* Name;

 int NumPoints;

};

void Encourage(const std::vector<Player>& players)

{

 using namespace std::ranges::views;

 auto result =

 players

 | filter([](Player p) { return p.NumPoints > 25;

})

 | transform([](Player p) { p.NumPoints--; return

p; })

 | reverse;

 for (const Player& p : result)

 {

 DebugLog(p.Name, p.NumPoints);

 }

}

Add restrictions

When using objects in a read-only way, make them const. When
code can usefully run at compile time, make it constexpr. When a
function can’t throw any exceptions, make it noexcept. When fields
don’t need to be used outside of a class, make them protected or
private. When derivation or overriding are undesirable, make
classes and member functions final. All of these restrictions will add
compiler-enforced rules that prevent misuse such as field access or
enable new uses such as compile-time code execution.

// Avoid: requires writable strings, can't be used at

compile time, might throw

int32_t GetTotalCharacters(std::string& first,

std::string& last)

{

 return first.size() + last.size();

}

// Encourage

constexpr int32_t GetTotalCharacters(

 const std::string& first, const std::string& last)

noexcept

{

 return first.size() + last.size();

}

Use braced initialization

Braced initialization (x{} or x = {}) is always clearly initialization.
Other forms of initialization such as with parentheses (x()) or
nothing (x) are much more ambiguous. They can be mistaken for
declarations, function calls, and function-style casts. Prefer braced
initialization to ensure that initialization occurs:

// Avoid

template <typename T>

T GetDefault()

{

 T t; // Default constructor for classes but nothing

for primitives

 return t;

}

struct Point2

{

 float X{ 0 };

 float Y{ 0 };

};

std::ostream& operator<<(std::ostream& s, const Point2&

p)

{

 s << p.X << ", " << p.Y;

 return s;

}

DebugLog(GetDefault<Point2>()); // 0, 0

DebugLog(GetDefault<int>()); // undefined behavior!

// Encourage

template <typename T>

T GetDefault()

{

 T t{}; // Default constructor for classes, primitives

are value-initialized

 return t;

}

DebugLog(GetDefault<Point2>()); // 0, 0

DebugLog(GetDefault<int>()); // 0

Standardize error-handling

There are two main choices for error-handling in C++: exceptions
and error codes. C’s errno isn’t considered a valid choice due to its
reliance on global state which is not part of the call signature and not
thread-safe. Codebases should choose one approach or the other to
handle errors consistently and safely. For example, introducing
exceptions into a codebase that uses error codes is likely to cause
uncaught exceptions that crash the program.

If exceptions are chosen, they should be thrown by value and caught
by const reference:

// Avoid

try

{

 throw new std::runtime_error{ "Boom!" };

}

catch (std::runtime_error* err)

{

 DebugLog(err->what()); // Boom!

 // ... memory leak here ...

}

// Encourage

try

{

 throw std::runtime_error{ "Boom!" };

}

catch (const std::runtime_error& err)

{

 DebugLog(err.what()); // Boom!

}

If error codes are chosen, a wrapper type such as std::optional is
encouraged over the use of null pointers to clearly indicate to callers
that the operation may not succeed. The use of [[nodiscard]] is
also often warranted to ensure errors are handled.

////////

// Avoid

////////

// Caller doesn't know what happens upon error

// Caller can ignore error return values

FILE* OpenFile(const char* path, const char* mode)

{

 return fopen(path, mode);

}

FILE* handle = OpenFile("/path/to/file", "rw");

fprintf(handle, "Hello!"); // Crash if null is returned

fclose(handle);

////////////

// Encourage

////////////

// Caller clearly knows this can fail due to the

std::optional return value

// Caller can't ignore it due to the [[nodiscard]]

attribute

[[nodiscard]] std::optional<FILE*> OpenFile(const char*

path, const char* mode)

{

 FILE* handle = fopen(path, mode);

 if (!handle)

 {

 return {};

 }

 return handle;

}

// Handling the return value is required by [[nodiscard]]

std::optional<FILE*> result = OpenFile("/path/to/file",

"rw");

if (!result.has_value())

{

 DebugLog("Failed to open file");

 return;

}

// Can't directly use the result. Forced to deal with it

being optional.

// Fewer chances to dereference null and crash

FILE* handle = result.value();

fprintf(handle, "Hello!");

fclose(handle);

Mark overridden member functions with override

A virtual member function that overrides a base class’ member
function doesn’t have to be marked that way, but it’s helpful to
indicate this. It provides a keyword that readers of the code can look
for to know how the function fits into the class design. It also
provides the compiler with a way to enforce that the function really
overrides a base class version. If the function signatures subtlely
don’t match or the base class no longer has such a function, the
compiler will catch the mistake instead of creating a new function.

// Avoid

struct Animal

{

 virtual void Speak(const char* message, bool

loud=false)

 {

 // By default, animals can't speak

 }

};

struct Dog : Animal

{

 // Missing "loud" parameter creates a new function

 virtual void Speak(const char* message)

 {

 DebugLog("woof: ", message);

 }

};

std::unique_ptr<Animal> a = std::make_unique<Dog>();

a->Speak("go for a walk?"); // Prints nothing because Dog

doesn't override

// Encourage

// Avoid

struct Animal

{

 virtual void Speak(const char* message, bool

loud=false)

 {

 // By default, animals can't speak

 }

};

struct Dog : Animal

{

 // Missing "loud" parameter is a compiler error

 virtual void Speak(const char* message) override

 {

 DebugLog("woof: ", message);

 }

};

std::unique_ptr<Animal> a = std::make_unique<Dog>();

a->Speak("go for a walk?"); // Never executed due to

compiler error

Use using, not typedef

C’s typedef alias is still supported, but using is a strictly better
version of it. The alias and the target are put into the familiar
assignment form where the left hand side is assigned to from the
right hand side. It also supports being templated, so it fits in better
with generic programming.

// Avoid

typedef float f32;

f32 pi = 3.14f;

// Encourage

using f32 = float;

f32 pi = 3.14f;

// Avoid

#define VEC(T) std::vector<T>

VEC(float) floats;

// Encourage

template <typename T> using Vec = std::vector<T>;

Vec<float> floats;

Minimize function definitions in header files

Header files are typically compiled many times as many translation
units directly or indirectly #include them. Any changes to the header
file will require recompiling all the translation units that #include it.
The linker will eventually de-duplicate these, but the compilation is
slow and so build and iteration times suffer. To reduce the time it
takes to compile header files, reduce the number of function
definitions in them. Instead, declare functions in them and define
them in translation units whenever possible.

////////

// Avoid

////////

// math.h

#pragma once

bool IsNearlyZero(float x)

{

 return std::abs(x) < 0.0001f;

}

////////////

// Encourage

////////////

// math.h

#pragma once

bool IsNearlyZero(float x);

// math.cpp

#include "math.h"

bool IsNearlyZero(float x)

{

 return std::abs(x) < 0.0001f;

}

Use internal linkage for file-specific definitions

By default, entities like variables, functions, and classes have
external linkage at file scope. This slows down compilation and the
linker because they need to consider the possibility that some other
translation unit might want to reference those entities. To speed it up,
use static or an unnamed namespace to give those entities internal
linkage and remove their candidacy for reference by other translation
units.

// Avoid

float PI = 3.14f;

// Encourage

static float PI = 3.14f;

// Encourage

namespace

{

 float PI = 3.14f;

}

Use operator overloading and user-defined literals
very sparingly

Overloaded operators don’t really get a name and user-defined
literals usually only have a terse one. As such, it’s often hard for
readers to understand what they’re doing. Even worse, overloaded
operators may appear to have one meaning while the
implementation of the overloaded operator does something else.
These should generally be avoided except in cases where the
meaning is already well-understood. For example, the + operator on
two std::string objects is clearly concatenation of the left hand
operand followed by the right hand operand but the + operator on
two Player objects is quite a puzzle.

// Avoid

struct Player

{

 int32_t Points;

 Player operator+(const Player& other)

 {

 return { Points + other.Points };

 }

};

Player a{ 100 };

Player b{ 200 };

Player c = a + b; // No conventional meaning for what +

does

DebugLog(c.Points); // 300

// Encourage

struct Vector2

{

 float X;

 float Y;

 Vector2 operator+(const Vector2& other)

 {

 return { X + other.X, Y + other.Y };

 }

};

Vector2 a{ 100, 200 };

Vector2 b{ 300, 400 };

Vector2 c = a + b; // Well-understood mathematical

operator

DebugLog(c.X, c.Y); // 400, 600

Prefer pre-increment to post-increment

Whether we use the pre-increment operator (++x) or the post-
increment operator (x++) on a primitive type like int makes no
difference. With classes that have overloaded this operator,
especially in the case of iterators, the pre-increment operator can be
implemented more efficiently by removing the need to temporarily
have two copies. It’s generally preferable to use the pre-increment
operator for this reason:

// Avoid: potentially slower than pre-increment

for (auto it = floats.begin(); it != floats.end(); it++)

{

 DebugLog(*it);

}

// Encourage: always the fastest way to increment

for (auto it = floats.begin(); it != floats.end(); ++it)

{

 DebugLog(*it);

}

Avoid template metaprogramming

The vast majority of code written should steer far clear from
advanced features such as template metaprogramming. This
umbrella term refers to using templates as the Turing-complete
language they are to generate very complex code at compile time.
Techniques such as SFINAE, not even covered in this book, should
generally be the province of a few expert-level library creators such
as those implementing the C++ Standard Library, testing
frameworks, serialization libraries, and so forth. Almost all “normal”
code should stick to “normal” features.

// Avoid: SFINAE like this and other TMP tricks

template<

 typename T,

 std::enable_if_t<std::is_integral<T>::value, bool> =

true>

void PrintKindOfPrimitive(T)

{

 DebugLog("it's an integer");

}

template<

 typename T,

 std::enable_if_t<std::is_floating_point<T>::value,

bool> = true>

void PrintKindOfPrimitive(T)

{

 DebugLog("it's a float");

}

https://en.wikipedia.org/wiki/Substitution_failure_is_not_an_error

PrintKindOfPrimitive(123); // it's an integer

PrintKindOfPrimitive(3.14); // it's a float

// Encourage using libraries that implement this or

avoiding the need at all

Use auto for at least long type names

Some codebases prefer the AAA style: “almost always auto.” This
means the type of most variables is auto and only in a few cases is
an explicit type named. Advantages include terseness and the
potential avoidance of type conversion, especially when types are
changed in existing code. Other codebases prefer to explicitly name
all types. Advantages include readability without the need for IDE
tooltips that reveal deduced types, such as when looking at code in a
web browser.

Regardless of the decision, and both are popular, both camps tend
to agree that very long types are hard to read and often made more
clear by the use of auto:

// Avoid: type name is so long that an alias is required

to fit it on one line

using Map =

std::unordered_map<std::basic_string<char8_t>,

Game::Player*>;

using It = Map::const_iterator;

for (It it = players.begin(); it != players.end(); ++it)

{

 DebugLog(it->first, "has", it->second->Points,

"points");

}

// Encourage: use auto for at least long types like these

for (auto it = players.begin(); it != players.end();

++it)

{

 DebugLog(it->first, "has", it->second->Points,

"points");

}

Use compile-time polymorphism more often

Both compile-time polymorphism with templates and run-time
polymorphism with virtual functions have valid use cases.
However, most languages have limited support for compile-time
polymorphism. As such, we can often overlook possibilities for
performance improvements by shifting run-time work to compile-
time. A lot of code that’s knowable at compile-time must be
determined at run-time in languages like C# while the opportunity is
there in C++ to make the determination at compile-time. Idiomatic
C++ tends to prefer these compile-time solutions to improve run-time
performance:

// Avoid: run-time polymorphism when compile-time is

suitable

struct Weapon

{

 virtual void DoDamage(Player& player) = 0;

};

struct FoamDart : Weapon

{

 virtual void DoDamage(Player& player) override

 {

 player.Health--;

 }

};

struct Bazooka : Weapon

{

 virtual void DoDamage(Player& player) override

 {

 player.Health = 0;

 }

};

FoamDart w;

w.DoDamage(p); // Run-time decision

// Encourage: compile-time polymorphism when suitable

struct FoamDart

{

 void DoDamage(Player& player)

 {

 player.Health--;

 }

};

struct Bazooka

{

 void DoDamage(Player& player)

 {

 player.Health = 0;

 }

};

template <typename TWeapon>

void DoDamage(const TWeapon& weapon, Player& player)

{

 weapon.DoDamage(player);

}

FoamDart w;

DoDamage(w, player); // Compile-time decision

Conclusion

None of the above is gospel. There are exceptional cases for all of
these guidelines. Nearly all guides will make some different choices
than the above. Despite the conflicting guidance, all of the above are
common advice in many guides, teams, codebases, or
organizations. Still, a lot is surely missing. It’s not feasible to list
every best practice or idiom for C++ any more than it’s feasible for a
much smaller, newer language like C#.

In the end, we’re not working on some abstract code. We’ll work on
particular codebases and it’s important to be aware of the norms of
those particular environments. Each will have their own written or
unwritten rules, not to mention very subjective thoughts on style such
as the placement of curly braces and whether indentation should be
done with tabs or spaces. These certainly aren’t C++-specific issues,
but in the case of C++ it’s wide use, large size, and long history
somewhat increase the challenge.

53. Conclusion

Language

C++ and C# have quite different design goals. C++ aims to be able
to be implemented by a compiler so efficiently that a programmer
would never need to use another language, like C, to improve
performance. In practice, assembly is sometimes used when
ultimate performance is required. It’s debatable as to whether this
counts as another language. C++ then tries to provide as much
programmer convenience as it can while also keeping to a high
degree of backward-compatibility.

The goal of C# is different. It attempts to provide a lot more
programmer convenience than C++ and is willing to sacrifice
performance to achieve that. From the perspective of languages like
Java, Python, and JavaScript, C# is much closer to the performance
end of the spectrum. C# finds a middle ground. Its inclusion of
structs is just one example of C#’s willingness to increase the
complexity programmers need to deal with so that they can improve
performance. Java is simpler because it just has classes so there’s
only one kind of thing that groups together variables and functions,
not two.

Because C# doesn’t aim for extreme performance, C# programmers
aiming to achieve extreme performance often do resort to calls into
other languages. Chief among them are C++ and C. This bifurcated
experience itself increases the complexity of the programming
environment as marshaling between the languages is required and
few concepts, such as types, are shared.

Likewise, many C# features can’t be used when high performance is
required. Classes and arrays, for example, necessarily entail
memory management and garbage collection (GC) which are nigh
impossible to optimize for high performance use cases such as VR

games. Even Unity’s Burst compiler is forced to put a ban on
language features like these. Many Unity developers have long ago
banned or minimized their use as well. The resulting programming
experience, replete with cumbersome and error-prone requirements
such as object pools, is far from ideal.

The same kind of criticisms are made of C++, but in the opposite
direction. It’s focus on performance results in many sharp edges.
Variables aren’t initialized by default and it’s pretty easy to use a
“dangling” pointer. There’s a lot of “undefined behavior,” too. Most of
this is necessary because providing these guarantees is deemed to
be too limiting or would entail overhead such as the addition of a GC.

In the end, both languages have different goals and have made
decades of design choices in line with achieving those goals. Each
language becomes rather unpleasant to use outside its intended
purpose. C++ is a probably a poor choice for a web service and C#
is probably a poor choice for training a neural network. Heroic efforts
have been made to improve C++’s programmer-friendliness and
C#’s performance, but these remain uphill battles even after many
years of struggle.

Standard Library

C++’s standard library is much more conservative than C#’s. It’s
company- and industry-agnostic and sticks to well-standardized
techniques and algorithms. C#’s standard library is has a lot of
company-specific features, especially when it comes to Microsoft-
owned technologies such as Windows. In general, it’s a lot larger
than the C++ Standard Library as it contains all of this company-
specific functionality but also a lot of support for widely-used
standards such as JSON and AES. One consequence of this
broader support is that support for older features such as GDI+ are
carried forward as baggage in C# or dropped at the cost of
backward-compatibility.

In terms of design, the two again diverge quite a bit. C++ provides
powerful language features that enable it to efficiently implement
“core” types like strings and tuples in the C++ Standard Library. C#
prefers to build these into the language. Where C++ provides zero-
overhead extension, such as through template-based compile-time
polymorphism, of the types in its standard library, C# often provides
little extensibility or extensibility via mechanisms such as virtual
functions that entail a runtime cost. The C# standard library is
typically easier to use and more consistent across codebases but
with lower performance and customizability. This is an extension and
implication of the two languages’ design goals to their standard
libraries.

Users of either standard library ultimately turn to other libraries and
frameworks to complete their apps. Whether it’s Unity for a game or
ASP.NET for a web service, C# apps rarely rely solely on the
standard library. The same goes for C++ where its users build
games on Unreal Engine or computer vision on OpenCV. Both
languages are very popular so there are tons of libraries available for
a wide range of tasks.

Problems Writing C#

The choice of language brings with it all the choices made by the
creators of that language and its standard library. In choosing C#,
we’re choosing a language where many of the features require the
presence of a memory manager and a GC. Consider classes.
There’s no way to allocate the memory where they’re stored without
the memory manager and no way to explicitly deallocate that
memory. The new operator implicitly tells the memory manager to
allocate memory, its use is implicitly tracked, and it’s implicitly
deallocated for us when no longer in use. It’s not just hard or
awkward to take control over the lifecycle of a C# class, it’s
impossible.

When we need this level of control, we’re outside the C#’s comfort
zone and we’ll face headwinds. To illustrate, let’s consider two paths
we could take to solve the problem. First, we can use a subset of C#
that doesn’t include features like classes. This is the route taken by
Unity’s Burst compiler and its “High Performance C#” (HPC#)
language subset. It uses structs and (unsafe) pointers instead of
classes in order to provide its own memory allocation and
deallocation.

The main issue with this approach is that a lot of C# language and
library design assumes that classes are present. When we kick them
out of the language, we lose our only mechanism that supports
inheritance, virtual functions, default constructors, and reference
semantics. We also make almost all C# libraries unusable as they
don’t conform to our language subset. The result is a very
constrained environment where we end up needing to call Dispose
functions to manually manage memory and where we cut ourselves
on sharp edges like the use of uninitialized objects due to the lack of
default constructors or the use of objects after calling Dispose.
Runtime safeguards can and have been added, but with runtime

overhead and feedback on programming errors delayed to runtime.
Neither is necessary in idiomatic C# where classes are used.

The second path is to keep using the whole language but in a very
unidiomatic way. This has been the traditional approach to C#
programming in Unity. One common example is the object pool
where we avoid releasing references so that the GC doesn’t run and
cause a frame spike:

public class ParticlePool

{

 private Stack<Particle> Particles;

 public Particle Get(Color color)

 {

 if (Particles.Count > 0)

 {

 Particle p = Particles.Pop();

 p.Init(color); // Need an Init function in

addition to a constructor

 return p;

 }

 return new Particle(color);

 }

 public void Release(Particle p)

 {

 Particles.Push(p);

 }

}

// At startup, establish the pool

ParticlePool pool = new ParticlePool();

// When needed, get a particle

Particle p = pool.Get(Color.Red);

// ... use p ...

// When done, put it back in the pool

pool.Release(p);

// Nothing stopping us from using particles we released.

Causes conflicts!

p.Color = Color.Green;

Manual approaches like these, without any support from the
language, are notoriously error-prone. Usually it’s a complaint
against C++ that memory must be managed manually, but it turns
out to be necessary in either of C#’s high-performance paths too.
Either way, we’re outside of the design goals for C# and so we run
into a lot of resistance in terms of performance and ease-of-use
barriers.

Problems Writing C++

C++ is no panacea. Its problems tend to be the other way around:
more code has to be built up to make the language programmer-
friendly because the defaults are often downright dangerous. C++ is
outside its own comfort zone by default and almost always requires
library support to make it usable in any practical sense. Consider the
same problem of memory management. C++’s default for the new
and delete operators is quite error-prone:

// When needed, allocate and initialize a particle

Particle* p = new Particle(Color::Red);

// ... use p ...

// When done, delete it

delete p;

// Nothing stopping us from double-deleting. Causes

crashes!

delete p;

// Nothing stopping us from using particles we deleted.

Causes crashes!

p->Color = Color::Green;

It’s to the point that best practices discourage using these language
features outside of specialty code such as classes that own the

memory through their lifecycle functions. We need to instead use
library code that makes the raw language easier to use:

// Need a library

#include <memory>

void Foo()

{

 // When needed, allocate and initialize a particle

 std::unique_ptr<Particle> p =

std::make_unique<Particle>(Color::Red);

 // ... use p ...

} // unique_ptr's destructor deletes the Particle

The addition of this library code brings us to roughly the level of
convenience as in idiomatic C#, but layers of libraries have overhead
in terms of complexity, compile times, and verbosity. Because we
opt-in to this library code, it’s also easy to accidentally ignore it and
use raw language features. Libraries can’t save us from these
mistakes. It’s common to add static and dynamic analyzer tools, but
none are as robust as language-level safeguards.

This is a reflection of C++’s bottom-up design. The language is
extremely powerful but also extremely hard to use. The C++
Standard Library is layered on top to make it easier to use, but only
for very general tasks. Additional libraries are then layered on top of
these to make domain-specific tasks easier. C++ achieves great
flexibility and great performance because libraries can be ignored
but the language cannot. C# builds a lot into the language and thus
has much less flexibility as so much is unavailable for us to opt-out
of. On the other hand, this makes C# code a lot more standardized.

For example, we never see an alternative implementation of the
string type but C++ has many: std::string, FString, QString, fbstring,
CsString, CString, …

https://docs.unrealengine.com/en-US/API/Runtime/Core/Containers/FString/index.html
https://doc.qt.io/qt-5/qstring.html
https://github.com/facebook/folly/blob/master/folly/String.h
https://www.copperspice.com/docs/cs_string/index.html
https://docs.microsoft.com/en-us/cpp/atl-mfc-shared/using-cstring

Conclusion

There is no best language, even within the domain of game
programming. C# is the language of Unity, but that choice is a mixed
bag of problems and benefits. C++ is the language of nearly every
other game engine, but that too has many problems and benefits.

Practically, our best option is to learn the strong and weak suits of
the two languages and use them for the purposes they’re best suited
to. A deep knowledge of each language, their standard libraries, and
the surrounding world of libraries and frameworks is extremely
helpful when it comes to knowing what’s possible, what’s feasible,
which language to choose for which task, and, ultimately, how to go
about the process of actually implementing in the chosen language.

Hopefully this book has delivered on its goal of broadening your
skills so you can effectively write code for other engines, or even
write C++ scripts for Unity!

https://jacksondunstan.com/articles/3938

	1. Introduction
	History
	Standard Library
	Tools
	Documentation
	Community

	2. Primitive Types and Literals
	Types
	Literals
	Conclusion

	3. Variables and Initialization
	Declaration
	Initialization
	Type Deduction
	Identifiers
	Pointers
	References
	Conclusion

	4. Functions
	Declaration and Definition
	Optional Parameter Names and Void
	Automatic Return Types
	Default Arguments
	Variadic Functions
	Overloading
	Ref, Out, and In parameters
	Static Variables
	Constexpr
	Conclusion

	5. Build Model
	Compiling and Linking
	Header Files and the Preprocessor
	ODR and Include Guards
	Inline
	Linkage
	Conclusion

	6. Control Flow
	If and Else
	Goto and Labels
	Switch
	Ternary
	While, Do-While, Break, and Continue
	For
	C#-Exclusive Operators
	Return
	Conclusion

	7. Pointers, Arrays, and Strings
	Pointers
	Arrays
	Pointers to Arrays and Arrays of Pointers
	Strings
	Pointer Arithmetic
	Function Pointers
	Conclusion

	8. References
	Pointers
	Lvalue References
	Rvalue References
	C# References
	Conclusion

	9. Enumerations
	Unscoped Enumerations
	Scoped Enumerations
	Conclusion

	10. Struct Basics
	Declaration and Definition
	Layout
	Bit Fields
	Static Data Members
	Disallowed Data Members
	Nested Types
	Conclusion

	11. Struct Functions
	Member Functions
	Overloaded Operators
	Conclusion

	12. Constructors and Destructors
	General Constructors
	Default Constructors
	Copy and Move Constructors
	Destructors
	Conclusion

	13. Initialization
	Explicit Constructors
	User-Defined Conversion Operators
	Initialization Types
	Default Initialization
	Copy Initialization
	Aggregate Initialization
	List Initialization
	Reference Initialization
	Value Initialization
	Direct initialization
	Constant Initialization
	Zero Initialization
	Conclusion

	14. Inheritance
	Base Structs
	Constructors and Destructors
	Multiple Inheritance
	Virtual Inheritance
	Virtual Functions
	Stopping Inheritance and Overrides
	C# Equivalency
	Conclusion

	15. Struct and Class Permissions
	Access Specifiers
	Friendship
	Const and Mutable
	C# Equivalency
	Conclusion

	16. Struct and Class Wrapup
	User-Defined Literals
	Local Classes
	Copy and Move Assignment Operators
	Unions
	Pointers to Members
	Conclusion

	17. Namespaces
	Namespace Basics
	Using Directives
	Inline Namespaces
	Unnamed Namespaces
	Using Declarations
	Namespace Aliases
	Conclusion

	18. Exceptions
	Throwing Exceptions
	Catching Exceptions
	Exception Specifications
	Stack Unwinding
	Slicing
	Conclusion

	19. Dynamic Allocation
	History and Strategy
	Allocation
	Initialization
	Deallocation
	Overloading New and Delete
	Owning Types
	Conclusion

	20. Implicit Type Conversion
	When Implicit Type Conversion Happens
	Standard Conversions
	Conversion Sequences
	Overflows
	Arithmetic
	Narrowing Conversions
	Conclusion

	21. Casting and RTTI
	const_cast
	reinterpret_cast
	static_cast
	C-Style Cast and Function-Style Cast
	dynamic_cast
	Run-Time Type Information
	typeid
	Conclusion

	22. Lambdas
	Basic Syntax
	Lambda Types
	Default Captures
	Individual Captures
	Captured Data Members
	Capture Rules
	IILE
	C# Equivalency
	Conclusion

	23. Compile-Time Programming
	Constant Variables
	Constant Functions
	Constant If
	Static Assertions
	Constant Expressions
	Conclusion

	24. Preprocessor
	Conditionals
	Macros
	Built-in Macros and Feature-Testing
	Miscellaneous Directives
	Usage and Alternatives
	Conclusion

	25. Intro to Templates
	What are Templates?
	Variables
	Functions
	Classes
	Members
	Lambdas
	C# Equivalency
	Conclusion

	26. Template Parameters
	Type Template Parameters
	Template Template Parameters
	Non-Type Template Parameters
	Ambiguity
	Conclusion

	27. Template Deduction and Specialization
	Template Argument Deduction
	Class Template Argument Deduction
	Specialization
	Conclusion

	28. Variadic Templates
	Parameter Packs
	Pack Expansion
	Where Packs Can Be Expanded
	Conclusion

	29. Template Constraints
	Constraints
	Requires Clauses
	Concepts
	Combining Concepts
	Overload Resolution
	C# Equivalency
	Conclusion

	30. Type Aliases
	Typedef
	Using Aliases
	Permissions
	Conclusion

	31. Deconstructing and Attributes
	Structured Bindings
	Attributes
	Conclusion

	32. Thread-Local Storage and Volatile
	Thread-Local Storage
	Volatile
	Conclusion

	33. Alignment, Assembly, and Language Linkage
	Alignof
	Alignas
	Assembly
	Language Linkage
	Conclusion

	34. Fold Expressions and Elaborated Type Specifiers
	Fold Expressions
	Elaborated Type Specifiers
	Conclusion

	35. Modules, The New Build Model
	Module Basics
	Partitions and Fragments
	Module Implementation Units
	Module Linkage
	Compatibility
	Conclusion

	36. Coroutines
	Fixed Statements
	Fixed Size Buffers
	Properties
	Extern
	Extension Methods
	Checked Arithmetic
	Nameof
	Decimal
	Reflection
	Conclusion

	37. Missing Language Features
	Fixed Statements
	Fixed Size Buffers
	Properties
	Extern
	Extension Methods
	Checked Arithmetic
	Nameof
	Decimal
	Reflection
	Conclusion

	38. C Standard Library
	Background
	General Purpose
	Math and Numbers
	Strings and Arrays
	Language Tools
	System Integration
	Conclusion

	39. Language Support Library
	Source Location
	Initializer List
	Type Info and Index
	Compare
	Concepts
	Coroutine
	Version
	Type Traits
	Conclusion

	40. Utilities Library
	Exception
	Standard Exceptions
	System Error
	Utility
	Tuple
	Variant
	Optional
	Any
	Bit Set
	Functional
	Conclusion

	41. System Integration Library' href
	Limits
	Numbers
	Numeric
	Ratio
	Complex
	Bit
	Random
	Conclusion

	42. Numbers Library
	Limits
	Numbers
	Numeric
	Ratio
	Complex
	Bit
	Random
	Conclusion

	43. Threading Library
	Thread
	Stop Token
	Mutex
	Shared Mutex
	Semaphore
	Barrier
	Latch
	Condition Variable
	Atomic
	Future
	Conclusion

	44. Strings Library
	Charconv
	String
	Locale and Codecvt
	Format
	String View
	Regex
	Conclusion

	45. Array Containers Library
	Vector
	Array
	Valarray
	Deque
	Queue
	Stack
	Conclusion

	46. Other Containers Library
	Unordered Map
	Map
	Unordered Set
	Set
	List
	Forward List
	Conclusion

	47. Containers Library Wrapup
	Iterators
	Allocators
	Free Functions
	Exceptions
	In-Place Construction
	Span
	Conclusion

	48. Algorithms Library
	Iterator
	Algorithm
	Numeric
	Conclusion

	49. Ranges and Parallel Algorithms' href
	Library Layout and iosfwd
	ios
	streambuf
	ostream and iostream
	istream
	iomanip
	fstream
	sstream
	syncstream
	Conclusion

	50. I/O Library
	Library Layout and iosfwd
	ios
	streambuf
	ostream and iostream
	istream
	iomanip
	fstream
	sstream
	syncstream
	Conclusion

	51. Missing Library Features
	Overview
	Cryptography
	Compression
	Networking
	Graphical User Interfaces
	CPU Intrinsics
	JSON
	Debugging
	Database Clients
	Conclusion

	52. Idioms and Best Practices
	Guides
	Use macros extremely rarely
	Add include guards to every header
	Include dependencies directly instead of relying on indirect includes
	Don’t call virtual functions in constructors
	Don’t use variadic functions
	No naked new and delete
	Prefer range-based loops
	Use scoped enums instead of unscoped enums
	Don’t breach namespaces in headers
	Make single-parameter constructors explicit
	Don’t use C casts
	Use specific integer sizes
	Use nullptr
	Follow the Rule of Zero
	Follow the Rule of Five
	Avoid raw loops
	Add restrictions
	Use braced initialization
	Standardize error-handling
	Mark overridden member functions with override
	Use using, not typedef
	Minimize function definitions in header files
	Use internal linkage for file-specific definitions
	Use operator overloading and user-defined literals very sparingly
	Prefer pre-increment to post-increment
	Avoid template metaprogramming
	Use auto for at least long type names
	Use compile-time polymorphism more often
	Conclusion

	53. Conclusion
	Language
	Standard Library
	Problems Writing C#
	Problems Writing C++
	Conclusion

