This week we continue to look at the C++ that IL2CPP outputs for C# to get a better understanding of what our C# is really doing. Today we’ll look at how abstract methods work, whether casting of sealed classes is faster than non-sealed classes, and what happens when creating a delegate.
Archive for category Unity
Today we continue looking at the C++ that IL2CPP generates for our C# code by calling various types of functions and using boxing and unboxing. Just how much performance overhead do these entail? Read on to find out!
The story usually has three parts. First, find the highest CPU cost functions in a profiler. Second, look at the corresponding C++ code that IL2CPP generated from C#. Third, stop using more parts of C#. Today’s article explores some more IL2CPP output and discovers some more areas of C# that are shockingly expensive to use.
Value types like int
, structs, and enums seem simple, but much of what we think we know about them just isn’t true. This article explores how value types actually work in C# and uses that knowledge to improve how they’re implemented in the C++ scripting system.
This week we’ll take a break from the C++ Scripting series to explore three optimizations we can make to our C# code so that IL2CPP generates faster C++ code for us. We’ll cover three areas that yield big speedups: casting, array bounds checking, and null checking.
C++ doesn’t have a foreach
keyword, but it does have an equivalent in “range for
loops”. Today we’ll implement support for them so we can easily loop over arrays and types implementing IEnumerable
and IEnumerable<T>
.
Imagine being able to modify C++ game code and have it take effect without even restarting the game. That’s the motivating idea behind today’s article. Read on to see how this works and how to use it to really speed up iteration times.
So far we’ve had C++ classes that derive from other classes, but not their interfaces. Today we’ll make C++ classes implement all their interfaces to form a full type hierarchy. Along the way we’ll learn about how inheritance works in C++, specifically the esoteric form known as “virtual inheritance.”
Today we’ll take a little holiday break from the C++ Scripting series to look back at 2017 in Unity programming.
We’ve been able to call methods since the very beginning, but we’ve always had to pass all the parameters. Today we’ll add support for default parameters so you can skip them sometimes. There’s a surprising amount of detail involved with this, so read on to learn some caveats of C#, .NET, and C++.